Differentiable Rendering Theory and Applications

Cheng Zhang

Department of Computer Science University of California, Irvine

Outline

- Introduction
 - Definition
 - Motivations
- Related work
- Our work
 - A Differential Theory of Radiative Transfer (SIGGRAPH ASIA 2019)
- Future work

What is diff. rendering?

Scene Parameter π

Rendering Image I

What is diff. rendering?

Scene Parameter π

Derivative Image I'

Why is diff. rendering important?

Scene Parameter $oldsymbol{\pi}$

Rendering Image *I*

Why is diff. rendering important?

- Inverse rendering
 - Enable gradient-based optimization
 - Backpropagation through rendering (machine learning)

Why is diff. rendering important?

• Inverse rendering

- Enable gradient-based optimization
- Backpropagation through rendering (machine learning)

Related work

- Rasterization rendering
 - Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning (ICCV 2019)
 - Neural 3D Mesh Renderer (CVPR 2018)
 - TensorFlow, pytorch3D etc.

Neural 3D Mesh Renderer

Related work

Related work

- Inverse transport networks, Che et at. [2018]
 - Volumetric scattering √
 - Geometry X

- Differentiable Monte Carlo ray tracing through edge sampling, Li et at. [2018]
 - Volumetric scattering X
 - Geometry √

(a) area sampling

(b) edge sampling

Our work

• A Differential Theory of Radiative Transfer (SIGGRAPH ASIA 2019)

- Differential theory of radiative transfer
 - Captures all surface and volumetric light transport effects
 - Supports derivative computation with respect to **any** parameters
- Monte Carlo estimator
 - Unbiased estimation
 - Analogous to volumetric path tracing

Radiative Transfer

• Radiative Transfer

a mathematical model describing how light interacts within participating media (e.g. smoke) and translucent materials (e.g. marble and skin)

Kutz et al. 2017

Gkioulekas et al. 2013

Radiative Transfer

• Radiative Transfer

a mathematical model describing how light interacts within participating media (e.g. smoke) and translucent materials (e.g. marble and skin)

- Now used in many areas
 - Astrophysics (light transport in space)
 - Biomedicine (light transport in human tissue)
 - Nuclear science & engineering (neutron transport)
 - Remote sensing
 - ...

Radiative Transfer

• Radiative Transfer

a mathematical model describing how light interacts within participating media (e.g. smoke) and translucent materials (e.g. marble and skin)

Radiative Transfer Equation (RTE)

Transport Collision operator operator Source $L = K_T K_C L + Q$

Radiative Transfer Equation (Operator Form)

Transport Operator K_T

Transmittance

$$T(x', x) = \exp\left(-\int_0^\tau \sigma_t(\boldsymbol{x} - \tau'\boldsymbol{\omega})d\,\tau'\right)$$

Extinction coefficient $\sigma_t(x)$ controls how frequently light scatters and is also known as optical density

$$L(\boldsymbol{x},\boldsymbol{\omega}) = \int_0^D T(\boldsymbol{x}',\boldsymbol{x}) (K_c L)(\boldsymbol{x}',\boldsymbol{\omega}) d\tau + Q$$

Collision Operator K_c

Source Q

KTKcTransport OperatorCollision Operator

$$L(\boldsymbol{x},\boldsymbol{\omega}) = \int_0^D T(\boldsymbol{x}',\boldsymbol{x}) \,\sigma_s(\boldsymbol{x}) \int_{\mathbb{S}^2} f_p(\boldsymbol{x}',\boldsymbol{\omega}_i,\boldsymbol{\omega}) L(\boldsymbol{x}',\boldsymbol{\omega}_i) d\boldsymbol{\omega}_i \,d\tau$$

+
$$\int_0^D T(\mathbf{x}', \mathbf{x}) \sigma_a(\mathbf{x}') L_e(\mathbf{x}', \boldsymbol{\omega}) d\tau + T(\mathbf{x}_0, \mathbf{x}) L_s(\mathbf{x}_0, \boldsymbol{\omega})$$

Radiative Transfer Equation (Integral Form)

Q Source

Differentiating the RTE

Differentiating individual operators

Differentiating the Collision Operator

RTE:
$$L = K_T K_c L + Q$$

Differentiating the Collision Operator

$$f(\boldsymbol{\omega}_{i})$$
$$(K_{c}L)(\boldsymbol{\omega}) = \sigma_{s} \int_{\mathbb{S}^{2}} f_{p}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}) L(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i}$$

$$\partial_{\pi} \int_{\mathbb{S}^{2}} f(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i} \implies \int_{\mathbb{S}^{2}} \partial_{\pi} f(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i} + \int_{\mathbb{S}}^{\mathsf{when}} f(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i} \xrightarrow{\mathsf{when}} f(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i} \xrightarrow{\mathsf{when}} f(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i}$$

Boundary term

Boundary term

Visibility

Normal

Sources of Discontinuity

The boundary term:

$$\int_{\mathbb{S}} \left\langle \mathbf{n}, \frac{\partial \boldsymbol{\omega}_{i}}{\partial \pi} \right\rangle f_{p}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}) \Delta L(\boldsymbol{\omega}_{i}) \mathrm{d}\boldsymbol{\omega}_{i}$$

Reduces to the change rate of ω_i (as an angle)

Sources of Discontinuity

The boundary term:

$$\int_{\mathbb{S}} \left\langle \boldsymbol{n}, \frac{\partial \boldsymbol{\omega}_{\boldsymbol{i}}}{\partial \pi} \right\rangle f_{p}(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}) \Delta L(\boldsymbol{\omega}_{\boldsymbol{i}}) \mathrm{d}\boldsymbol{\omega}_{\boldsymbol{i}}$$

 $\Delta L(\omega_i) = L(\checkmark) - L(\checkmark)$

(with the absence of attenuation)

Discontinuities in 3D

visualization of L

visualization of discontinuity curves \$

line integral $\int_{\mathbb{S}} \left\langle \boldsymbol{n}, \frac{\partial \boldsymbol{\omega}_{i}}{\partial \pi} \right\rangle f_{p}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}) \Delta L(\boldsymbol{\omega}_{i}) d\boldsymbol{\omega}_{i}$

Discontinuities in 3D

Discontinuities curves: Projection of moving geometric edges onto the sphere

$$\int_{\mathbb{S}} \left\langle \boldsymbol{n}, \frac{\partial \boldsymbol{\omega}_{i}}{\partial \pi} \right\rangle f_{p}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}) \Delta L(\boldsymbol{\omega}_{i}) \mathrm{d}\boldsymbol{\omega}_{i}$$

Discontinuities in 3D

Edge normal

- in the tangent space of the sphere
- perpendicular to the discontinuity curve at direction ω_i

$$\int_{\mathbb{S}} \left\langle \boldsymbol{n}, \frac{\partial \boldsymbol{\omega}_{i}}{\partial \pi} \right\rangle f_{p}(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}) \Delta L(\boldsymbol{\omega}_{i}) \mathrm{d}\boldsymbol{\omega}_{i}$$

Other Terms in the RTE $L = K_T K_C L + Q$

Transport operator $(K_T K_c L)(x, \omega) = \int_0^D T(x', x) (K_c L)(x', \omega) d\tau$ Transmittance

Source

$$Q = T(\mathbf{x_0}, \mathbf{x}) L_s(\mathbf{x_0}, \boldsymbol{\omega})$$

Full Radiance Derivative

Significance of the Boundary Terms

Orig. Image

 $P_{\text{light}} = P_0 + \begin{pmatrix} 0\\ \pi\\ 0 \end{pmatrix}$ $P_{\text{cube}} = P_1 + \begin{pmatrix} 0\\ \pi \\ 0 \end{pmatrix}$

Initial position (constant)

Significance of the Boundary Terms

Orig. Image

Deriv. Image

Deriv. Image (no boundary term)

Differentiating the RTE: Summary

$$L = K_T K_c L + Q$$

Key:

- Tracking discontinuities of integrands
- Establishing boundary terms accordingly

$$\partial_{\pi}L = \partial_{\pi}(K_{T}K_{c}L) + \partial_{\pi}Q$$

Differential RTE $L = K_T K_C L + Q$ $\partial_{\pi}L = \partial_{\pi}(K_{T}K_{c}L) + \partial_{\pi}Q$ **Boundary terms are included** $\begin{pmatrix} \partial_{\pi}L \\ L \end{pmatrix} = \begin{pmatrix} K_T K_C & K_* \\ 0 & K_T K_C \end{pmatrix} \begin{pmatrix} \partial_{\pi}L \\ L \end{pmatrix} + \begin{pmatrix} \partial_{\pi}Q \\ 0 \end{pmatrix}$

Results

Results: Validation

Orig. Image

 $P_{\text{light}} = P_0 + \begin{pmatrix} 0\\ \pi\\ 0 \end{pmatrix}$ $P_{\text{cube}} = P_1 + \begin{pmatrix} 0 \\ \pi \\ 0 \end{pmatrix}$

Initial position (constant)

(equal-time comparison)

Results: Inverse Rendering

- Scene configurations
 - participating media
 - changing geometry
- Optimization
 - L2 loss for its simplicity
 - Any differentiable metric can be used with our method

Apple in a Box

#iterations	Time (CPU core minute per iteration)
80	12.2

Camera Pose

Target

Optimization Process

#iterations	Time (CPU core minute per iteration)
220	9.3

None-Line-of-Sight

Target

Optimization Process

Diff. View (not used in optimization)

#iterations	Time (CPU core minute per iteration)
100	9

None-Line-of-Sight

None-Line-of-Sight

Target

Optimization process

Diff. View

#iterations	Time (CPU core minute per iteration)
60	7.6

Design-Inspired

Target

Optimization process

#iterations	Time (CPU core minute per iteration)
110	11.2

Design-inspired

Target

Optimization Process

Diff. View

#iterations	Time (CPU core minute per iteration)
100	27.2

Future work

- Differentiable rendering is slow due to
 - Main term
 - Needs better sampling methods
 - Boundary term
 - Detecting visibility changes (e.g., object silhouettes)
 - Tracing side paths

Thank you