Differentiable Rendering Theory and Applications

Cheng Zhang

Department of Computer Science
University of California, Irvine

Outline

- Introduction
- Definition
- Motivations
- Related work
- Our work
- A Differential Theory of Radiative Transfer (SIGGRAPH ASIA 2019)
- Future work

What is diff. rendering?

Scene Parameter $\boldsymbol{\pi}$
Rendering Image I

What is diff. rendering?

Scene Parameter $\boldsymbol{\pi}$

Derivative Image \boldsymbol{I}^{\prime}

Why is diff. rendering important?

Scene Parameter $\boldsymbol{\pi}$
Rendering Image I

Why is diff. rendering important?

- Inverse rendering
- Enable gradient-based optimization
- Backpropagation through rendering (machine learning)

Why is diff. rendering important?

- Inverse rendering
- Enable gradient-based optimization
- Backpropagation through rendering (machine learning)

Related work

- Rasterization rendering
- Soft Rasterizer: A Differentiable Renderer for Image-based 3D Reasoning (ICCV 2019)
- Neural 3D Mesh Renderer (CVPR 2018)
- TensorFlow, pytorch3D etc.

Soft Rasterizer

Neural 3D Mesh Renderer

Related work

Volume Scattering Gkioulekas et al. 2013, 2016

Fabrication
Tsai et al. 2019
Sumin et al. 2019
 Azinovic et al. 2019

Related work

- Inverse transport networks, Che et at. [2018]
- Volumetric scattering $\sqrt{ }$
- Geometry X

- Differentiable Monte Carlo ray tracing through edge sampling, Li et at. [2018]
- Volumetric scattering X
- Geometry $\sqrt{ }$

(a) area sampling

(b) edge sampling

Our work

- A Differential Theory of Radiative Transfer (SIGGRaph ASIA 2019)

- Differential theory of radiative transfer
- Captures all surface and volumetric light transport effects
- Supports derivative computation with respect to any parameters
- Monte Carlo estimator
- Unbiased estimation
- Analogous to volumetric path tracing

Radiative Transfer

- Radiative Transfer

a mathematical model describing how light interacts within participating media (e.g. smoke) and translucent materials (e.g. marble and skin)

Kutz et al. 2017

Gkioulekas et al. 2013

Radiative Transfer

- Radiative Transfer
a mathematical model describing how light interacts within participating media (e.g. smoke) and translucent materials (e.g. marble and skin)
- Now used in many areas
- Astrophysics (light transport in space)
- Biomedicine (light transport in human tissue)
- Nuclear science \& engineering (neutron transport)
- Remote sensing
- ...

Radiative Transfer

- Radiative Transfer
a mathematical model describing how light interacts within participating media (e.g. smoke) and translucent materials (e.g. marble and skin)

Radiative Transfer Equation (RTE)

$$
\boldsymbol{L}=K_{T} K_{C} L^{\text {Transport }} \begin{aligned}
& \text { Collision } \\
& \text { operator } \\
& \text { operator }
\end{aligned}
$$

Radiative Transfer Equation

(Operator Form)

Transport Operator K_{T}

Transmittance

$$
T\left(x^{\prime}, x\right)=\exp \left(-\int_{0}^{\tau} \sigma_{t}\left(\boldsymbol{x}-\tau^{\prime} \boldsymbol{\omega}\right) d \tau^{\prime}\right)
$$

Extinction coefficient $\sigma_{t}(\boldsymbol{x})$
controls how frequently light scatters and is also known as optical density

$$
L(\boldsymbol{x}, \boldsymbol{\omega})=\int_{0}^{D} T\left(x^{\prime}, \boldsymbol{x}\right)\left(K_{c} L\right)\left(\boldsymbol{x}^{\prime}, \boldsymbol{\omega}\right) d \tau+Q
$$

Collision Operator K_{C}

Source

K_{T}
 Transport Operator Collision Operator

$$
\begin{aligned}
L(\boldsymbol{x}, \boldsymbol{\omega}) & =\int_{0}^{D} T\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right) \sigma_{s}(\boldsymbol{x}) \int_{\mathrm{s}^{2}} f_{p}\left(\boldsymbol{x}^{\prime}, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}\right) L\left(\boldsymbol{x}^{\prime}, \boldsymbol{\omega}_{\boldsymbol{i}}\right) d \boldsymbol{\omega}_{\boldsymbol{i}} d \tau \\
& +\int_{0}^{D} T\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}\right) \sigma_{a}\left(\boldsymbol{x}^{\prime}\right) L_{e}\left(\boldsymbol{x}^{\prime}, \boldsymbol{\omega}\right) d \tau+T\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{x}\right) L_{s}\left(\boldsymbol{x}_{\mathbf{0}}, \boldsymbol{\omega}\right)
\end{aligned}
$$

Radiative Transfer Equation

Differentiating the RTE

$L=$

Differentiating both sides
$\partial_{\pi} L=\partial_{\pi}\left(K_{T} K_{C} L\right)+\partial_{\pi} Q$

Differentiating individual operators

Differentiating the Collision Operator

RTE: $L=K_{T} K_{C} L+Q$
(x omitted for

$$
(K c L)(\boldsymbol{\omega})=\sigma_{s} \int_{\begin{array}{c}
\text { Scattering } \\
\text { coefficient }
\end{array}} \overbrace{\substack{\text { Phase } \\
\text { function }}}^{f_{p}\left(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}\right) L\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right)} \mathrm{d} \boldsymbol{\omega}_{\boldsymbol{i}}
$$

$$
\partial_{\pi} \int_{\mathbb{s}^{2}} f\left(\boldsymbol{\omega}_{i}\right) \mathrm{d} \boldsymbol{\omega}_{i}=?
$$

Requires differentiating a (spherical) integral

Differentiating the Collision Operator

$$
\left(K_{C} L\right)(\boldsymbol{\omega})=\sigma_{s} \int_{\mathbb{S}^{2}} \overbrace{f_{p}\left(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}\right) L\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right)}^{f\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right)} \mathrm{d} \boldsymbol{\omega}_{\boldsymbol{i}}
$$

Boundary term

$$
\partial_{\pi} \int_{\mathbb{S}^{2}}\left(\text { afc }(60 d i d) d \omega_{i} R e y n o l d s \text { transport theorem }\right)
$$

Boundary term

$$
\left(K_{C} L\right)(\boldsymbol{\omega})=\sigma_{s} \int_{\mathbb{S}^{2}} \overbrace{f_{p}\left(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}\right) L\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right)}^{f\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right)} \mathrm{d} \boldsymbol{\omega}_{\boldsymbol{i}}
$$

$$
\Delta f\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right)=f_{p}\left(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}\right) \Delta L\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right)
$$

discontinuities of change rate of discontinuity integrand f

$$
\int_{\mathbb{S}} \underbrace{\left\langle\boldsymbol{n}^{\frac{\partial \boldsymbol{\omega}_{\boldsymbol{i}}}{\partial \pi}}\right\rangle}_{\text {change rate of discontinuity }} \Delta f\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right)
$$

Δf is the difference of integrand f across the discontinuity $\boldsymbol{\omega}_{\boldsymbol{i}}$

Sources of Discontinuity

$$
\begin{aligned}
& \text { The boundary term: } \\
& \int_{\mathbb{S}}\left\langle\boldsymbol{n}, \frac{\partial \boldsymbol{\omega}_{\boldsymbol{i}}}{\partial \pi}\right\rangle f_{p}\left(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}\right) \Delta L\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right) \mathrm{d} \boldsymbol{\omega}_{\boldsymbol{i}}
\end{aligned}
$$

The boundary term:

Normal

Sources of Discontinuity

The boundary term:
$\int_{\mathbb{S}} \underbrace{\left\langle\boldsymbol{n}, \frac{\partial \boldsymbol{\omega}_{i}}{\partial \pi}\right\rangle} f_{p}\left(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}\right) \Delta L\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right) \mathrm{d} \boldsymbol{\omega}_{\boldsymbol{i}}$
Reduces to the change rate of $\boldsymbol{\omega}_{\boldsymbol{i}}$ (as an angle)

Sources of Discontinuity

The boundary term:

$$
\begin{gathered}
\int_{\mathbb{S}}\left\langle\boldsymbol{n}, \frac{\partial \boldsymbol{\omega}_{\boldsymbol{i}}}{\partial \pi}\right\rangle f_{p}\left(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}\right) \Delta L\left(\boldsymbol{\omega}_{i}\right) \mathrm{d} \boldsymbol{\omega}_{\boldsymbol{i}} \\
\Delta L\left(\boldsymbol{\omega}_{i}\right)=L(\infty)-L(\infty)
\end{gathered}
$$

(with the absence of attenuation)

Discontinuities in 3D

visualization of L
visualization of discontinuity
curves s
line integral

$$
\int_{\mathbb{S}}\left\langle\boldsymbol{n}, \frac{\partial \boldsymbol{\omega}_{\boldsymbol{i}}}{\partial \pi}\right\rangle f_{p}\left(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}\right) \Delta L\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right) \mathrm{d} \boldsymbol{\omega}_{\boldsymbol{i}}
$$

Discontinuities in 3D

Discontinuities in 3D

(b) Circle

Edge normal

- in the tangent space of the sphere
- perpendicular to the discontinuity curve at direction $\boldsymbol{\omega}_{\boldsymbol{i}}$

$$
\int_{\mathbb{S}}\left\langle n, \frac{\partial \boldsymbol{\omega}_{\boldsymbol{i}}}{\partial \pi}\right\rangle f_{p}\left(\boldsymbol{\omega}_{\boldsymbol{i}}, \boldsymbol{\omega}\right) \Delta L\left(\boldsymbol{\omega}_{\boldsymbol{i}}\right) \mathrm{d} \boldsymbol{\omega}_{\boldsymbol{i}}
$$

Other Terms in the RTE

$$
L=K_{T} K_{C} L+
$$

Transport operator

$$
\left(K_{T} K_{c} L\right)(x, \omega)=\int_{0}^{D} T\left(x^{\prime}, x\right)\left(K_{c} L\right)\left(x^{\prime}, \omega\right) d \tau
$$

Source

$$
Q=T\left(x_{0}, x\right) L_{S}\left(x_{0}, \omega\right)
$$

Full Radiance Derivative

Significance of the Boundary Terms

Orig. Image

$$
P_{\text {light }}=\begin{array}{c:c}
& P_{0} \\
& +\left(\begin{array}{l}
0 \\
\pi \\
0
\end{array}\right) \\
P_{\text {cube }}= & P_{1} \\
P_{1} & +\left(\begin{array}{l}
0 \\
\pi \\
0
\end{array}\right)
\end{array}
$$

Initial position (constant)

Significance of the Boundary Terms

Orig. Image

Differentiating the RTE: Summary

$$
L=K_{T} K_{C} L+Q
$$

Key:

- Tracking discontinuities of integrands
- Establishing boundary terms accordingly

$$
\partial_{\pi} L=\partial_{\pi}\left(K_{T} K_{C} L\right)+\partial_{\pi} Q
$$

Differential RTE

$$
\begin{gathered}
L=K_{T} K_{C} L+Q \\
\partial_{\pi} L=\partial_{\pi}\left(K_{T} K_{C} L\right)+\partial_{\pi} Q \\
\binom{\partial_{\pi} L}{L}=\left(\begin{array}{cc}
K_{T} K_{C} & K_{*} \\
0 & K_{T} K_{C}
\end{array}\right)\binom{\partial_{\pi} L}{L}+\binom{\partial_{\pi} Q}{Q}
\end{gathered}
$$

Differentiable Volumetric Path Tracing

Results

Results: Validation

Orig. Image

$$
P_{\text {light }}=\begin{array}{c:c}
P_{0} & +\left(\begin{array}{l}
0 \\
\pi \\
0
\end{array}\right) \\
P_{\text {cube }}= & P_{1} \\
P_{1} & +\left(\begin{array}{l}
0 \\
\pi \\
0
\end{array}\right)
\end{array}
$$

Initial position (constant)

Results: Validation

Finite Diff. difference
(equal-time comparison)

Results: Inverse Rendering

- Scene configurations
- participating media
- changing geometry
- Optimization
- L2 loss for its simplicity
- Any differentiable metric can be used with our method

Apple in a Box

Target
Parameters

Cube roughness

Optimization process

\#iterations	Time (CPU core minute per iteration)
80	12.2

Camera Pose

Optimization Process

\#iterations	Time
	(CPU core minute per iteration)
220	9.3

None-Line-of-Sight

\#iterations	Time (CPU core minute per iteration)
100	9

None-Line-of-Sight

None-Line-of-Sight

Target
Optimization process
Diff. View

\#iterations	Time (CPU core minute per iteration)
60	7.6

Design-Inspired

Design-Inspired
Target

Optimization process

\#iterations	Time
(CPU core minute per iteration)	
110	11.2

Design-inspired

Target
Optimization Process
Diff. View

\#iterations	Time (CPU core minute per iteration)
100	27.2

Future work

- Differentiable rendering is slow due to
- Main term
- Needs better sampling methods
- Boundary term
- Detecting visibility changes (e.g., object silhouettes)
- Tracing side paths

Thank you

