

高效参与介质绘制方法研究

王贝贝

高维信息智能感知与系统 教育部重点实验室

NANJING UNIVERSITY OF SCIENCE & TECHNOLOGY

Participating Medium with refractive boundaries

Describe a medium

Homogeneous Medium:

- Absorption coefficient
- Scattering coefficient
- Phase function (describes the angular distribution, might be highly anisotropic)

Low order scattering dominant

High order scattering dominant

Single / Double / Multiple Scattering

DingtipSeautringgg

Radiative Transfer Equation

$$L(x,\vec{\omega}) = \int_{x_{min}}^{x_{max}} T_r(x\leftrightarrow x_t)\sigma_s(x_t)L_i(x_t,\vec{\omega})dt + T_r(x_{max}\leftrightarrow x_{min})L(x_s,\vec{\omega})$$
$$T_r(x\leftrightarrow x_t) = e^{-\sigma_t ||x-x_t||}, \sigma_t = \sigma_a + \sigma_s \qquad L_i(x_t,\vec{\omega}) = \int_{\Omega_{4\pi}} p(x_t,\vec{\omega},\vec{\omega}_t)L(x_t,\vec{\omega}_t)d\omega_t$$

Related Work

• Photon density estimation

Unifying points, beams, and paths [Krivanek et al. '14]

Beyond Points and Beams [Benedikt Bitterli, Wojciech Jarosz ' 17]

Related Work

• Multiple scattering

Virtual Ray Lights [Novák et al 2012]

Related Work

• Single scattering

[Bruce Walter et al 09]

[Holzschuch 2015]

Motivation

long time to converge/ noisy results

Point-Based Light Transport for Participating Media with Refractive Boundaries

Beibei Wang, Jean-Dominique Gascuel, Nicolas Holzschuch EGSR 2016 (EI&I)

Our approach

- Inspired by PBGI, from surface samples to volume samples
- Efficient noise-free solution for:
 - single scattering: local query
 - double scattering: global traversal
 - multiple scattering: precomputation

Our method – Caching volume samples

Our method – Caching surface samples

Light Surface Sample

Diffuse surface

Our method – *Single scattering computation*

Our method – *Double scattering computation*

Our method – *Multiple scattering precomputation*

Precompute multiple scattering as a 4D table

(Shoot photons randomly to the medium and record the interacts) Independent of scenes

Our method – *Multiple scattering computation*

Light Volume Sample

$$z_{k} = (\boldsymbol{P}_{k} - \boldsymbol{v}_{i}) \cdot \boldsymbol{d}_{i}$$

$$\rho_{k} = ||(\boldsymbol{P}_{k} - \boldsymbol{v}_{i}) - z_{k}\boldsymbol{d}_{i}||$$
mult. $(\boldsymbol{P}_{k}) = e^{-\sigma_{t}\boldsymbol{d}_{k}} \sum_{\boldsymbol{v}_{i}} L_{o}\left(\frac{\rho_{k}}{\ell}, \frac{z_{k}}{\ell}, T_{(\boldsymbol{v}_{i}, \boldsymbol{d}_{i})}(\boldsymbol{o})\right)$

Implementation

- Our technique: Mitsuba renderer, UPBP from SmallUPBP.
- Under bidirectional path tracing framework.
- Octree to organize volume/surface samples
- Camera ray sampling: exponential plus regular.
- Support point light only.

Results - Single Scattering

Results

Results

Performance Measures

Scene	Max	UPBP			Ours			
	path	Memory <i>(GB)</i>	Rend. Time (h)	Memory (GB)	Pre. Time (s)	Rend. Time (m)		MSE
Oil	11	16.25	6	1.21	22	41.13		1.1e-3
Wine	11	12.66	6	1.86	37	18.42		8.3e-5
Wax	50	13.41	3	1.49	32	3.07		2.4e-4
Milk	50	18.57	6	0.80	30	34.56		1.2e-3
Bumpy Sphere	50	6.75	3	1.34	33	2.43		3.2e-4

9x to 60x faster than UPBP (start-of-the art)

Point-Based Light Transport for Participating Media with Refractive Boundaries

Beibei Wang, Jean-Dominique Gascuel, Nicolas Holzschuch

INRIA; Universite Grenoble-Alpes, LJK; CNRS, LJK

Conclusion

- Fast point-based method for single / double / multiple scattering computation.
- 9x to 60x faster than UPBP.
- Support both high order and low order scattering.
- Noise free.
- Easy to integrate to many rendering frameworks.

Can we do better?

Interactive Volumetric Rendering

- Provide **interactive rendering** of any homogenous participating media.
- Allow Light editing / Material editing.
- Produce pictures **visually identical** to reference solutions

Beibei Wang, Nicolas Holzschuch, IEEE TVCG 2018

Previous Work

• Multiple Scattering

Jimenez et al. [2009; 2015]

Fast, real-time models to compute sub-surface scattering effects in **high-albedo** materials. (< 1ms)

Previous Work

• Without a refractive interface

Sun et al. [2005]

Kaplanyan et al. [2010]

Billeter et al. [2012]

Previous Work

• Single Scattering, assume there is no refractive interface between the camera and volume caustics

Sun et al. [2010]

Hu et al. [2010]

Our approach

- Based on Point based method, we propose a GPU based implementation.
 - Interactive rendering of any homogenous media
 - Light editing
 - Material editing

Review Our Method

- Single scattering: local query
- Double scattering: global traversal
- Multiple scattering: precomputation

Precomputation for Entire Media Space

- In our CPU method, 4D for each material.
- Each material: mfp, albedo, g.

So: 7 dimension: 10 * 10 * 10 * 128 * 64 * 36 * 18 * 1 float !!

Precomputation: Multiple Scattering Effects

Overall cost: 600MB

At runtime, extract from this table to get the current materials.

Caching Illumination Samples

This is updated when the light sources change.

Rendering Step 1: Generating Material Paths Buffer

Rendering Step 2: Computing Single Scattering

Rendering Step 3: Computing Multiple Scattering

Full Solution

Surface Illumination

Single Scattering

Multiple Scattering

Full Solution

Results

Results

41

Performance Measures

Scene		UPBP	Ours (without editing)							Error	
	Max path	Memory (GB)	Rend. (h)	Memory (MB))	Cam. (ms)	Singl. (ms)	Mul. (ms)	Others. (ms)	Total. (ms)	MSE
Oil	11	16.25	6	607		10.2	42.8	18.2	13.9	85.1	2.8e-3
Wax	50	13.41	3	601		1.5	1.9	6.1	6.0	15.5	7.1e-4
Bumpy Sphere	50	6.75	3	577		0.88	13.84	6.7	7.68	29.1	6.6e-4

Performance Measures

]	
Scene		Materi	al Editing	5		Light	Editing		
	Table (ms)	v. Tree (ms)	s. Tree (ms)	Total (ms)	Vol. (ms)	v. Tree (ms)	s. Tree (ms)	Total. (ms)	
Oil	0.04	0.28	12.5	12.8	4.4	11.2	12.7	28.3	
Wax	0.06	0.16	4.5	4.72	6.3	18.4	4.4	19.1	
Bumpy Sphere	0.06	0.18	7.0	7.24	3.2	10.1	6.5	19.8	

Single Scattering Only.

Editing the position of the light source in real-time. [33 ms]

This is recorded in real4time.

Conclusion

- Provide interactive rendering of any homogenous participating media.
- Allow Light editing / Material editing.
- Produce pictures visually identical to reference solutions.

Precomputed Multiple Scattering for Rapid Light Simulation in Participating Media

Beibei Wang, Liangsheng Ge, Nicolas Holzschuch.

IEEE TVCG 2019

Motivation

[Novák et al 2012]

1.8 mins

48

Multiple scattering with precomputation

- Precompute multiple scattering.
 -- assuming infinite media.
- Use this precomputation
 - -- to extend existing algorithms.
 - -- make them converge faster.
 - -- multiple scattering only.

Precomputation Stage

Precompute multiple scattering and store it in two tables

Apply to Existing Algorithms

- Virtual Ray Lights (VRL).
- Unified Point, Beams and Paths (UPBP).
- Manifold-Exploration Metropolis Light Transport (**MEMLT**).

Application to VRL - Lighting Stage

Store the rays (orange line) inside the medium after a surface event

Application to VRL - Rendering Stage

Use the precomputed tables to compute multiple scattering from these light rays (orange line) to the camera rays (red line).

Application to MEMLT

Results – Full solution

Results – Full solution

Results – Full solution

Our Algorithm (UPBP), 600 s

UPBP, Equal Time

UPBP, Reference, 6h

CONVERGENCE SPEED COMPARISON (UPBP)

Bumpy Sphere Scene

Limitations

- Visibility between light rays and camera rays.
- Biased.

Limitations

Limitations

Conclusion

- New representation to **represent multiple scattering** in participating media.
- Easy to integrate with existing algorithms.
- Reduces noise, with **limited impact on accuracy**.
- Interesting for materials with large albedo and small meanfree-path.

Future Work

- More compact representation
- More accurate solution
 - using the table from further bounces instead of from the second one and automatic switch depend on the accuracy
- Layered materials with media

Interactive Simulation of Scattering Effects in Participating Media Using a Neural Network Model

Liangsheng Ge*, **Beibei Wang***, Lu Wang, Xiangxu Meng, Nicolas Holzschuch

IEEE TVCG 2020 (will be presented at I3D 2020)

Thanks! Question?

Beibei.wang@njust.edu.cn https://wangningbei.github.io/

Precomputation Table

Scene	Memory (MB)		Time (s)	
Oil	158.29		52	
Wine	108.81		45	
Wax	78.77		370	
Milk	97.11		442	

Material parameters and Precomputation times with 500 M particles, 20608 lobes and 36 x 18 directions for each lobe.

EGSR 2016
Diffusion Comparison

TVCG 2019

Fig. 25. Performance of the GPU implementation, over varying parameters: points, pixels and scene complexity.

TVCG 2018