

Accurate Appearance Preserving Prefiltering for Rendering Displacement-Mapped Surfaces

Lifan Wu¹ Shuang Zhao² Ling-Qi Yan³ Ravi Ramamoorthi¹

¹University of California, San Diego ²University of California, Irvine ³University of California, Santa Barbara

Realistic Appearance Models

Image courtesy of Mitsuba [Jakob 2010]

Appearance Models with Rich Details

[Jakob et al. 2010]

[Zhao et al. 2011]

[Heitz et al. 2015]

[Khungurn et al. 2015]

[Han et al. 2007]

[Wu et al. 2011]

[Yan et al. 2014, 2016]

Modeling Details

Base shape

Problems

Complex light-surface interaction

Difficult to compute and analyze

$$F = \int_{A_n} \cdots \int_{A_1} f(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \, \mathrm{d}A(\boldsymbol{x}_1) \dots \, \mathrm{d}A(\boldsymbol{x}_n)$$

Motivation

 Camera zooming out → less details are visible → use coarser models [Zhao et al. 2016]

Prefilter high-resolution displacement maps + BRDFs

Preserve appearance

Original

Prefiltering

Benefits

Anti-aliasing, storage reduction

Challenges

• Difficult to accurately capture changes of illumination effects

Our Contributions

Background

2D Displacement Maps

- Describe surface details (micro-geometry)
- Need expensive super-sampling

base surface patch

Close-up views
Distant views

Displacement mapping

Surface patch

Prefiltering

- Jointly handle changes of illumination effects
- It is challenging due to non-linearity

Shadowing-masking

Interreflections

Previous Work

• Handle parts of illumination effects

[Han et al. 2007]

[Wu et al. 2011]

[lwasaki et al. 2012]

Normal variation

Missing

Normal variation + Shadowing-masking Normal variation + Shadowing-masking

AT

Interreflections

Previous Work

Assuming certain types of surface (Gaussian/GGX/V-groove)

[Olano and Baker 2010]

[Heitz et al. 2016]

[Lee et al. 2018] [Xie and Hanrahan 2018]

• Fail to generalize

Previous Work

• Iterative inverse rendering (optimization) is expensive

Our Approach vs. Previous Work

Method	Interreflections	General surfaces	Precomputation
Bi-Scale	No	Yes	Fast
Microfacet	Yes	No	Very fast
Inverse optimization	Yes	Yes	Slow
Ours	Yes	Yes	Fast

Effective BRDF

Effective BRDF

Effective BRDF

• Weighted average BRDF over \mathcal{P} [Wu et al. 2011] [Dupuy et al. 2013]

 $f^{ ext{eff}}(oldsymbol{\omega}_i,oldsymbol{\omega}_o;\mathcal{G},f) =$

Our Approach

Appearance matching

Before prefiltering

After prefiltering

Effective BRDF with Interreflections

$$f^{ ext{eff}}(oldsymbol{\omega}_i,oldsymbol{\omega}_o;\mathcal{P},f)$$

Without interreflections

 $f_{\mathrm{gi}}^{\mathrm{eff}}(oldsymbol{\omega}_i,oldsymbol{\omega}_o;\mathcal{P},f)$

With interreflections

Effective BRDF with Interreflections

$$f^{\text{eff}}(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o};\mathcal{G},f) = \frac{1}{A_{\mathcal{G}}(\boldsymbol{\omega}_{o})} \int_{\mathcal{P}} \frac{f(\boldsymbol{x}_{m}(\boldsymbol{p}),\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o})\langle\boldsymbol{\omega}_{m}(\boldsymbol{p}),\boldsymbol{\omega}_{i}\rangle V(\boldsymbol{x}_{m}(\boldsymbol{p}),\boldsymbol{\omega}_{i})}{\mathbf{Single-bounce \ contribution}} A_{\mathcal{G}}(\boldsymbol{p},\boldsymbol{\omega}_{o})k_{\mathcal{P}}(\boldsymbol{p}) \,\mathrm{d}\boldsymbol{p}$$

$$f^{\text{eff}}_{\text{ir}}(\boldsymbol{\omega}_{i},\boldsymbol{\omega}_{o};\mathcal{G},f) = \frac{1}{A_{\mathcal{G}}(\boldsymbol{\omega}_{o})} \int_{\mathcal{P}} \left[\int \cdots \int F(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{n}) \,\mathrm{d}\boldsymbol{\mu}(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{n}) \right] A_{\mathcal{G}}(\boldsymbol{p},\boldsymbol{\omega}_{o})k_{\mathcal{P}}(\boldsymbol{p}) \,\mathrm{d}\boldsymbol{p}$$

Multi-bounce path integral

Downsampling Displacement Maps

Solved using least-squares

Step 1: Multi-Lobe SVBRDF

• NDF: A (hemi-)spherical distribution of normal directions

Statistical representation: decorrelating positions and normals

Step 1: Multi-Lobe SVBRDF

• Normal mapping [Han et al. 2007]

• Multi-lobe BRDF = Multi-lobe NDF \otimes Micro-BRDF

1/5/7/

small-scale

geometry

SG lobes

NDF

Step 2: Scaling Function

Matching effective BRDFs

 $f_{\mathrm{ir}}^{\mathrm{eff}}(\mathcal{G}_{\mathrm{orig}}, f_{\mathrm{orig}}) \approx f_{\mathrm{ir}}^{\mathrm{eff}}(\mathcal{G}_{\mathrm{low}}, R_{\mathrm{ir}} \cdot f_{\mathrm{low}}')$

- Computing the scaling function directly: $R_{
 m ir}$ =
 - No need for iterative optimization

 $egin{array}{cccc} \omega_o & \omega_o & \omega_o \ \omega_i & \omega_i & \omega_i \end{array} & & \omega_i & \omega_i \end{array}$

• Not a practical algorithm

$$=\frac{f_{\rm ir}^{\rm eff}(\mathcal{G}_{\rm orig}, f_{\rm orig})}{f_{\rm ir}^{\rm eff}(\mathcal{G}_{\rm low}, f_{\rm low}')}$$

Efficient Factorization

- Impractical to compute and store the full 6D scaling function
- Rank-1 factorization $R_{\mathrm{ir}}(\boldsymbol{x}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) \approx T_{\mathrm{ir}}(\boldsymbol{x}) \cdot S_{\mathrm{ir}}(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o)$

Efficient Factorization

- $T_{
 m ir}(m{x})$ and $S_{
 m ir}(m{\omega}_i,m{\omega}_o)$ can be tabulated coarsely (4² and 15⁴)
- They can be reconstructed from sparse 6D samples

Efficient Factorization

Multi-Scale LoD Joint prefiltering Appearance matching

- Prefilter at each mipmap level
- Interpolate path contributions traced on different levels

Results

Scaling Function Resolution

• Determine angular resolutions (ω_i : 15², ω_o : 15²)

MSE $(\times 10^{-4})$:

MSE $(\times 10^{-4})$:

Scaling Function Resolution

• Determine spatial resolutions (uv: 4²)

MSE (× 10^{-4}) :

MSE ($\times 10^{-4}$)

Validations

Energy conservation

• Synthetic two-color V-grooves

Accuracy Comparison

(16×)²-downsampled.

LoD Rendering

Changing Lighting/Viewing

Limitation / Future Work

- Fail when the vertical displacements are large
- Rely on model-dependent precomputation
- Theoretical analysis of appearance prefiltering
- Material editing

Future Work

Additional Progress Towards the Unification of Microfacet and Microflake Theories

Figure 1: We show that light transport due to (a) a rough microfacet surface is the same as the light transport due to (b) a semi-infinite homogeneous microflake volume consisting of (c) non-symmetric microflakes that are reflective on one side and transparent on the other side, which have the same NDF as (a).

Future Work

- Machine learning + appearance modeling
 - Next talk!
 - Neural BTF Compression and Interpolation [Rainer et al. 2019]
 - Unified Neural Encoding of BTFs [Rainer et al. 2020]

• . . .

Conclusion

Thank you!

