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http://www.youtube.com/watch?v=ki2pGGFwa5Q&t=41
http://www.youtube.com/watch?v=ipIM-c4lCJ0&t=49
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Related Work
● Differentiable rigid body simulation 

○ Formulation not scalable to high dimensionality

Degrave et al. 2019

Belbute-Peres et al. 2019
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Related Work
● Learning-based physics [Li et al. 2018]

○ Unable to guarantee physical correctness
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Our Contributions
● Dynamic collision handling to reduce dimensionality

● Gradient computation of collision response using implicit differentiation

● Optimized backpropagation using QR decomposition
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Introduction to Simulation
● Partial differential equation (PDE) of Newton’s law:

● Solve             satisfying                            , where 

● Discretization to ordinary differential equations (ODE):
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Point Cloud Simulation Flow
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Cloth Simulation Flow
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Collision Response
●
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Mesh Simulation Flow: Backpropagation
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Implicit Differentiation: Linear Solve
● Formulation: 

● Input:     and   . Output: 

● Back propagation: use       to compute       and      
○    : the loss function.
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Implicit Differentiation: Linear Solve
● Back propagation: use       to compute       and      , where     is the loss 

function.

● Implicit differentiation form: 

● Solution: 

where       is computed from                     , and    is the solution of              .
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Mesh Simulation Flow: Backpropagation
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Gradients of Collision?
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Collision Handling

● Objective formulation: Quadratic Programming
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Gradients of Collision Response
● Karush-Kuhn-Tucker (KKT) condition:

● Implicit differentiation:
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Gradients of Collision Response
● Solution:

● where dz and dλ is provided by the linear equation:
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Acceleration of Gradient Computation
●

● Linear system of n+m
○ n: DOFs in the impacts
○ m: number of constraints/impacts

● Insight: Optimized point moves along the 
tangential direction w.r.t. constraint gradient
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Acceleration of Gradient Computation
● Explicit solution of the linear equation:

where Q and R is obtained from:

● Theoretical speedup: O((n+m)³) → O(nm²)
○ n: number of vertices
○ m: number of constraints
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Experimental Results
● Ablation study

○ Backpropagation speedup

● Applications
○ Material estimation

○ Motion control
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Ablation Study
● Speed improvement in backpropagation
● Scene setting: a large piece of cloth crumpled inside a pyramid
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Results
● Speed improvement in backpropagation
● Scene setting: a large piece of cloth crumpled inside a pyramid

The runtime performance of gradient computation is significantly improved 
by up to two orders of magnitude. 

31



Material Estimation
● Scene setting: A piece of cloth hanging under gravity and a constant wind 

force.
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Results
● Application: Material estimation
● Scene setting: A piece of cloth hanging under gravity and a constant wind 

force.

Our method achieves the fastest speed and the smallest overall error.
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Application: Material Estimation
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http://www.youtube.com/watch?v=ipIM-c4lCJ0&t=20


Motion Control
● Scene setting: A piece of cloth being lifted and dropped to a basket.
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Results
● Application: Motion control
● Scene setting: A piece of cloth being lifted and dropped to a basket.

        Our method achieves the best performance with a much smaller 
number of simulations.
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Application: Motion Control
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http://www.youtube.com/watch?v=ipIM-c4lCJ0&t=50


Conclusion
● Differentiable simulation

○ Applicable to optimization tasks

○ Embedded in neural networks for learning and control

● Fast backpropagation for collision response
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Future Work
● Optimization of the computation graph

○ Vectorization

○ PyTorch3D/DiffTaichi

● Integrate with other materials
○ Rigid body, deformable body, articulated body, etc
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