# Differentiable Cloth Simulation for Inverse Problems

Junbang Liang



# Content

- Motivation
- Related Work
- Our Method
  - Simulation pipeline
  - Gradient Computation
- Results

#### **Motivation**

- Differentiable Physics Simulation as a Network Layer
  - Physical property estimation
  - Control of physical systems



Trainable Network Layers

Differentiable Simulation Layer

#### **Motivation**

- Differentiable Physics Simulation as a Network Layer
  - Physical property estimation
  - Control of physical systems



Yang et al. (2017)

#### Motion Control - Optimization





Baseline - Point Mass

Ours

Demo of our differentiable simulation

# Content

- Motivation
- Related Work
- Our Method
  - Simulation pipeline
  - Gradient Computation
- Results

#### **Related Work**

- Differentiable rigid body simulation
  - Formulation not scalable to high dimensionality

Belbute-Peres et al. 2019

Degrave et al. 2019



#### **Related Work**

- Learning-based physics [Li et al. 2018]
  - Unable to guarantee physical correctness



# **Our Contributions**

- Dynamic collision handling to reduce dimensionality
- Gradient computation of collision response using implicit differentiation
- Optimized backpropagation using QR decomposition

# Content

- Motivation
- Related Work
- Our Method
  - Simulation pipeline
  - Gradient Computation
- Results

#### Introduction to Simulation

• Partial differential equation (PDE) of Newton's law:

• Solve 
$$y(x,t)$$
 satisfying  $rac{\partial^2 y}{\partial t^2}=rac{1}{
ho}f(y,rac{\partial y}{\partial x})$ , where  $y(x,0)=y_0(x)$ 

- Discretization to ordinary differential equations (ODE):
- Solve  $\mathbf{y}(t) = [y(x_i, t)]_i$  satisfying  $\frac{d^2y}{dt^2} = \frac{1}{m}\mathbf{f}(\mathbf{y}, \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}})$ , where  $\mathbf{y}(0) = [y_0(x_i)]_i$

#### Introduction to Simulation

• Partial differential equation (PDE) of Newton's law:

• Solve 
$$y(x,t)$$
 satisfying  $rac{\partial^2 y}{\partial t^2}=rac{1}{
ho}f(y,rac{\partial y}{\partial x})$ , where  $y(x,0)=y_0(x)$ 

- Discretization to ordinary differential equations (ODE):
- Solve  $\mathbf{y}(t) = [y(x_i, t)]_i$  satisfying  $\frac{d^2y}{dt^2} = \frac{1}{m}\mathbf{f}(\mathbf{y}, \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}})$ , where  $\mathbf{y}(0) = [y_0(x_i)]_i$

#### **Point Cloud Simulation Flow**

- 1. Init  $\mathbf{x}_0, \mathbf{v}_0, \Delta t, t = 0$
- 2. Compute  $\Delta \mathbf{v}$  from  $\mathbf{x}_t, \mathbf{v}_t$

$$\circ \quad \Delta \mathbf{v} = \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}_{t+1}, \mathbf{v}_{t+1}) * \Delta t$$

- Newton's method
- 3.  $\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{v}_{t+1} * \Delta t, \mathbf{v}_{t+1} = \mathbf{v}_t + \Delta \mathbf{v}$
- 4. t = t + 1, goto 2

#### **Cloth Simulation Flow**

- 1. Init  $\mathbf{x}_0, \mathbf{v}_0, \Delta t, t = 0$
- 2. Compute  $\Delta \mathbf{v}$  from  $\mathbf{x}_t, \mathbf{v}_t$ 
  - $\circ \quad \Delta \mathbf{v} = \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}_{t+1}, \mathbf{v}_{t+1}) * \Delta t$
  - Newton's method
- 3.  $\tilde{\mathbf{x}}_{t+1} = \mathbf{x}_t + \tilde{\mathbf{v}}_{t+1} * \Delta t, \tilde{\mathbf{v}}_{t+1} = \mathbf{v}_t + \Delta \mathbf{v}$
- 4.  $\mathbf{x}_{t+1}, \mathbf{v}_{t+1} = \text{resolve\_collision}(\mathbf{\tilde{x}}_{t+1}, \mathbf{\tilde{v}}_{t+1})$
- 5. t = t + 1, goto 2

#### **Collision Response**

- Collision Detection:  $dist(node_i, face_j, t) < \delta$ , where  $\delta$  is the cloth thickness, and t is some time between two steps.
- Objective: introduce minimum energy to avoid collision:

$$dist(\mathsf{node}_i, \mathsf{face}_j, t) - \delta \ge 0$$

$$\downarrow$$

$$C_{ee} = \boldsymbol{n} \cdot [(\alpha_3 \boldsymbol{x}_3 + \alpha_4 \boldsymbol{x}_4) - (\alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2)]$$

$$C_{vf} = \boldsymbol{n} \cdot [\boldsymbol{x}_4 - (\alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2 + \alpha_3 \boldsymbol{x}_3)]$$



#### **Collision Response**

- Collision Detection:  $dist(node_i, face_j, t) < \delta$ , where  $\delta$  is the cloth thickness, and t is some time between two steps.
- Objective: introduce minimum energy to avoid collision:

 $dist(node_i, face_j, t) - \delta \ge 0$ 

- Constraint formulation:  $\mathbf{G}\mathbf{x} + \mathbf{h} \leq \mathbf{0}$
- Objective formulation: Quadratic Programming:

$$\begin{array}{ll} \underset{\mathbf{z}}{\text{minimize}} & \frac{1}{2}(\mathbf{z} - \mathbf{x})^{\top} \mathbf{W}(\mathbf{z} - \mathbf{x}) \\ \text{subject to} & \mathbf{G}\mathbf{z} + \mathbf{h} \leq \mathbf{0} \end{array}$$

# Mesh Simulation Flow: Backpropagation

Gradient computation available?

?

2

- 1. Init  $\mathbf{x}_0, \mathbf{v}_0, \Delta t, t = 0$
- 2. Compute  $\Delta \mathbf{v}$  from  $\mathbf{x}_t, \mathbf{v}_t$

$$\circ \quad \Delta \mathbf{v} = \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}_{t+1}, \mathbf{v}_{t+1}) * \Delta t$$

• Newton's method

3. 
$$\tilde{\mathbf{x}}_{t+1} = \mathbf{x}_t + \tilde{\mathbf{v}}_{t+1} * \Delta t, \, \tilde{\mathbf{v}}_{t+1} = \mathbf{v}_t + \Delta \mathbf{v}$$

- 4.  $\mathbf{x}_{t+1}, \mathbf{v}_{t+1} = \text{resolve\_collision}(\mathbf{\tilde{x}}_{t+1}, \mathbf{\tilde{v}}_{t+1})$
- 5. t = t + 1, goto 2

Handled by auto-differentiation

- Handled by auto-differentiation
  - Handled by auto-differentiation

#### Mesh Simulation Flow: Backpropagation

Gradient computation available?

2

- 1. Init  $\mathbf{x}_0, \mathbf{v}_0, \Delta t, t = 0$
- 2. Compute  $\Delta \mathbf{v}$  from  $\mathbf{x}_t, \mathbf{v}_t$ 
  - $\circ \quad \Delta \mathbf{v} = \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}_{t+1}, \mathbf{v}_{t+1}) * \Delta t$
  - Newton's method
- 3.  $\tilde{\mathbf{x}}_{t+1} = \mathbf{x}_t + \tilde{\mathbf{v}}_{t+1} * \Delta t, \tilde{\mathbf{v}}_{t+1} = \mathbf{v}_t + \Delta \mathbf{v}$
- 4.  $\mathbf{x}_{t+1}, \mathbf{v}_{t+1} = \text{resolve\_collision}(\mathbf{\tilde{x}}_{t+1}, \mathbf{\tilde{v}}_{t+1})$
- 5. t = t + 1, goto 2

Using implicit differentiation!

#### Implicit Differentiation: Linear Solve

- Formulation:  $\hat{\mathbf{M}}\mathbf{a} = \mathbf{f}$
- Input:  $\hat{\mathbf{M}}$  and  $\mathbf{f}$ . Output:  $\mathbf{a}$
- Back propagation: use  $\frac{\partial \mathcal{L}}{\partial \mathbf{a}}$  to compute  $\frac{\partial \mathcal{L}}{\partial \hat{\mathbf{M}}}$  and  $\frac{\partial \mathcal{L}}{\partial \mathbf{f}}$ 
  - $\mathcal{L}$  : the loss function.

#### Implicit Differentiation: Linear Solve

- Back propagation: use  $\frac{\partial \mathcal{L}}{\partial \mathbf{a}}$  to compute  $\frac{\partial \mathcal{L}}{\partial \hat{\mathbf{M}}}$  and  $\frac{\partial \mathcal{L}}{\partial \mathbf{f}}$ , where  $\mathcal{L}$  is the loss function.
- Implicit differentiation form:  $\hat{\mathbf{M}}\partial \mathbf{a} = \partial \mathbf{f} \partial \hat{\mathbf{M}} \mathbf{a}$

• Solution: 
$$\frac{\partial \mathcal{L}}{\partial \hat{\mathbf{M}}} = -\mathbf{d}_{\mathbf{a}}\mathbf{z}^{\top} \quad \frac{\partial \mathcal{L}}{\partial \mathbf{f}} = \mathbf{d}_{\mathbf{a}}^{\top}$$

where  $\mathbf{d}_{\mathbf{a}}$  is computed from  $\hat{\mathbf{M}}^{\top}\mathbf{d}_{\mathbf{a}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}}^{\top}$ , and  $\mathbf{z}$  is the solution of  $\hat{\mathbf{M}}\mathbf{a} = \mathbf{f}$ .

### Mesh Simulation Flow: Backpropagation

Gradient computation available?

- 1. Init  $\mathbf{x}_0, \mathbf{v}_0, \Delta t, t = 0$
- 2. Compute  $\Delta \mathbf{v}$  from  $\mathbf{x}_t, \mathbf{v}_t$ 
  - $\circ \quad \Delta \mathbf{v} = \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}_{t+1}, \mathbf{v}_{t+1}) * \Delta t$
  - Newton's method
- 3.  $\tilde{\mathbf{x}}_{t+1} = \mathbf{x}_t + \tilde{\mathbf{v}}_{t+1} * \Delta t, \tilde{\mathbf{v}}_{t+1} = \mathbf{v}_t + \Delta \mathbf{v}$
- 4.  $\mathbf{x}_{t+1}, \mathbf{v}_{t+1} = \text{resolve\_collision}(\mathbf{\tilde{x}}_{t+1}, \mathbf{\tilde{v}}_{t+1})$
- 5. t = t + 1, goto 2

Using implicit differentiation!

#### Gradients of Collision?





#### **Collision Handling**

Objective formulation: Quadratic Programming

$$\begin{array}{ll} \underset{\mathbf{z}}{\text{minimize}} & \frac{1}{2}(\mathbf{z} - \mathbf{x})^{\top} \mathbf{W}(\mathbf{z} - \mathbf{x}) \\ \text{subject to} & \mathbf{G}\mathbf{z} + \mathbf{h} \leq \mathbf{0} \end{array}$$

z: optimized vertex positionsW: weight matrixG, h: constraint matrices

#### **Gradients of Collision Response**

• Karush-Kuhn-Tucker (KKT) condition:

 $\mathbf{W}\mathbf{z}^* - \mathbf{W}\mathbf{x} + \mathbf{G}^\top \boldsymbol{\lambda}^* = 0$  $D(\boldsymbol{\lambda}^*)(\mathbf{G}\mathbf{z}^* + \mathbf{h}) = 0$ 

• Implicit differentiation:

$$\begin{bmatrix} \mathbf{W} & \mathbf{G}^{\top} \\ D(\lambda^*)\mathbf{G} & D(\mathbf{G}\mathbf{z}^* + \mathbf{h}) \end{bmatrix} \begin{bmatrix} \partial \mathbf{z} \\ \partial \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{M}\partial \mathbf{x} - \partial \mathbf{G}^{\top}\lambda^* \\ -D(\lambda^*)(\partial \mathbf{G}\mathbf{z}^* + \partial \mathbf{h}) \end{bmatrix}$$

- z: current vertex positions
- W: weight matrix
- G, h: constraint matrices
- $\lambda$ : Augmented Lagrangian multiplier
- D(): diagonalize operator
- \*: optimization output

#### Gradients of Collision Response

• Solution:

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \mathbf{x}} &= \mathbf{d}_{\mathbf{z}}^{T} \mathbf{W} \\ \frac{\partial \mathcal{L}}{\partial \mathbf{G}} &= -D(\lambda^{*}) \mathbf{d}_{\lambda} \mathbf{z}^{*\top} - \lambda^{*} \mathbf{d}_{\mathbf{z}}^{\top} \\ \frac{\partial \mathcal{L}}{\partial \mathbf{h}} &= -\mathbf{d}_{\lambda}^{T} D(\lambda^{*}). \end{aligned}$$

• where dz and d $\lambda$  is provided by the linear equation:

$$\begin{bmatrix} \mathbf{W} & \mathbf{G}^{\top} D(\lambda^*) \\ \mathbf{G} & D(\mathbf{G}\mathbf{z}^* + \mathbf{h}) \end{bmatrix} \begin{bmatrix} \mathbf{d}_{\mathbf{z}} \\ \mathbf{d}_{\lambda} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial \mathbf{z}}^{\top} \\ \mathbf{0} \end{bmatrix}$$

#### Acceleration of Gradient Computation

- $\begin{bmatrix} \mathbf{W} & \mathbf{G}^{\top} D(\lambda^*) \\ \mathbf{G} & D(\mathbf{G}\mathbf{z}^* + \mathbf{h}) \end{bmatrix} \begin{bmatrix} \mathbf{d}_{\mathbf{z}} \\ \mathbf{d}_{\lambda} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial \mathbf{z}}^{\top} \\ \mathbf{0} \end{bmatrix}$
- Linear system of n+m
  - n: DOFs in the impacts
  - m: number of constraints/impacts
- Insight: Optimized point moves along the tangential direction w.r.t. constraint gradient



#### Acceleration of Gradient Computation

- $\begin{bmatrix} \mathbf{W} & \mathbf{G}^{\top} D(\lambda^*) \\ \mathbf{G} & D(\mathbf{G}\mathbf{z}^* + \mathbf{h}) \end{bmatrix} \begin{bmatrix} \mathbf{d}_{\mathbf{z}} \\ \mathbf{d}_{\lambda} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial \mathbf{z}}^{\top} \\ \mathbf{0} \end{bmatrix}$
- Linear system of n+m
  - n: DOFs in the impacts
  - m: number of constraints/impacts
- Insight: Optimized point moves along the tangential direction w.r.t. constraint gradient



#### Acceleration of Gradient Computation

• Explicit solution of the linear equation:

$$\mathbf{d}_{\mathbf{z}} = \sqrt{\mathbf{W}}^{-1} (\mathbf{I} - \mathbf{Q} \mathbf{Q}^{\top}) \sqrt{\mathbf{W}}^{-1} \frac{\partial \mathcal{L}}{\partial \mathbf{z}}^{\top}$$
$$\mathbf{d}_{\lambda} = D(\lambda^{*})^{-1} \mathbf{R}^{-1} \mathbf{Q}^{\top} \sqrt{\mathbf{W}}^{-1} \frac{\partial \mathcal{L}}{\partial \mathbf{z}}^{\top}$$

where Q and R is obtained from:

$$\sqrt{\mathbf{W}}^{-1}\mathbf{G}^{\top} = \mathbf{Q}\mathbf{R}$$

- Theoretical speedup:  $O((n+m)^3) \rightarrow O(nm^2)$ 
  - n: number of vertices
  - m: number of constraints



# Content

- Motivation
- Related Work
- Our Method
  - Simulation pipeline
  - Gradient Computation
- Results

# **Experimental Results**

- Ablation study
  - Backpropagation speedup
- Applications
  - Material estimation
  - Motion control

# **Ablation Study**

- Speed improvement in backpropagation
- Scene setting: a large piece of cloth crumpled inside a pyramid



#### Results

- Speed improvement in backpropagation
- Scene setting: a large piece of cloth crumpled inside a pyramid

| Mesh       | Baseline     |               | Ours        |                                      | Speedup     |         |
|------------|--------------|---------------|-------------|--------------------------------------|-------------|---------|
| resolution | Matrix size  | Runtime (s)   | Matrix size | Runtime (s)                          | Matrix size | Runtime |
| 16x16      | $599\pm76$   | $0.33\pm0.13$ | $66\pm26$   | $\textbf{0.013} \pm \textbf{0.0019}$ | 8.9         | 25      |
| 32x32      | $1326\pm23$  | $1.2\pm0.10$  | $97\pm24$   | $\textbf{0.011} \pm \textbf{0.0023}$ | 13          | 112     |
| 64x64      | $2024\pm274$ | $4.6\pm0.33$  | $242\pm47$  | $\textbf{0.072} \pm \textbf{0.011}$  | 8.3         | 64      |

The runtime performance of gradient computation is significantly improved by up to two orders of magnitude.

#### **Material Estimation**

• Scene setting: A piece of cloth hanging under gravity and a constant wind force.



#### Results

- Application: Material estimation
- Scene setting: A piece of cloth hanging under gravity and a constant wind force.

| Method      | Runtime<br>(sec/step/iter)        | Density<br>Error (%)            | Non-Ln Streching<br>Stiffness Error (%) | Ln Streching<br>Stiffness Error (%) | Bending Stiffness<br>Error (%) | Simulation<br>Error (%)         |
|-------------|-----------------------------------|---------------------------------|-----------------------------------------|-------------------------------------|--------------------------------|---------------------------------|
| Baseline    | -                                 | $68 \pm 46$                     | $74 \pm 23$                             | $160 \pm 119$                       | $70 \pm 42$                    | $12 \pm 3.0$                    |
| L-BFGS [30] | $2.89\pm0.02$                     | $4.2\pm5.6$                     | $64 \pm 34$                             | $72\pm90$                           | $70 \pm 43$                    | $4.9\pm3.3$                     |
| Ours        | $\textbf{2.03} \pm \textbf{0.06}$ | $\textbf{1.8} \pm \textbf{2.0}$ | $57\pm29$                               | $45\pm41$                           | $77 \pm 36$                    | $\textbf{1.6} \pm \textbf{1.4}$ |

Our method achieves the fastest speed and the smallest overall error.

#### **Application: Material Estimation**

#### Motion Control - Optimization



#### **Motion Control**

• Scene setting: A piece of cloth being lifted and dropped to a basket.



#### Results

- Application: Motion control
- Scene setting: A piece of cloth being lifted and dropped to a basket.

| Method     | Error (%) | Samples |
|------------|-----------|---------|
| Point Mass | 111       |         |
| PPO [18]   | 432       | 10,000  |
| Ours       | 17        | 53      |
| Ours+FC    | 39        | 108     |

Our method achieves the best performance with a much smaller number of simulations.

#### **Application: Motion Control**

#### Motion Control - Optimization



#### Conclusion

- Differentiable simulation
  - Applicable to optimization tasks
  - Embedded in neural networks for learning and control
- Fast backpropagation for collision response

#### Future Work

- Optimization of the computation graph
  - Vectorization
  - PyTorch3D/DiffTaichi
- Integrate with other materials
  - Rigid body, deformable body, articulated body, etc

#### Q&A