Differentiable Cloth Simulation
for Inverse Problems

Junbang Liang

UNIVERSITY OF

MARYLAND

Content

e Motivation

Motivation

e Differentiable Physics Simulation as a Network Layer
o Physical property estimation

o Control of physical systems

Time Collision
Integration Response m) | Loss

State: velocity, position, material, force...

X
i
/.1

Qv
@ A0
Qe Q
Qi QO
9 g
3 8

-
Q

Trainable Network Layers Differentiable Simulation Layer

Motivation

e Differentiable Physics Simulation as a Network Layer

o Physical property estimation
o Control of physical systems

Material Cloning

animation
with predicted material

Yang et al. (2017)

Motion Control - Optimization

Baseline - Point Mass

Demo of our differentiable simulation

http://www.youtube.com/watch?v=ki2pGGFwa5Q&t=41
http://www.youtube.com/watch?v=ipIM-c4lCJ0&t=49

Content

e Related Work

Related Work

e Differentiable rigid body simulation

o Formulation not scalable to high dimensionality

Belbute-Peres et al. 2019

o o s e

A
>

==

Degrave et al. 2019

Related Work

e Learning-based physics [Li et al. 2018]

o Unable to guarantee physical correctness

Our Contributions
e Dynamic collision handling to reduce dimensionality

e Gradient computation of collision response using implicit differentiation

e Optimized backpropagation using QR decomposition

Content

e Our Method
o Simulation pipeline

o Gradient Computation

Introduction to Simulation

e Partial differential equation (PDE) of Newton'’s law:

Oy
? Oz

e Solve y(z,t)satisfying % - %f(y), where y(z,0) = yo(z)

e Discretization to ordinary differential equations (ODE):

e Solve y(t) = [y(z;,t)]; satisfying % = Lf(y, %), where y(0) = [yo ()]

m

10

Introduction to Simulation

e Partial differential equation (PDE) of Newton'’s law:

Oy
? Oz

e Solve y(z,t)satisfying % - %f(y), where y(z,0) = yo(z)

e Discretization to ordinary differential equations (ODE):

e Solve y(t) = [y(z;,t)]; satisfying % = Lf(y, %), where y(0) = [yo ()]

m

11

Point Cloud Simulation Flow
1. Init xq, v, At,t =0

2. Compute Av from x;, v¢
o AV = MU (X441, Vig1) x At

o Newton’s method
3. Xip1 =X+ Vi x A, Vi = v+ Av
4. t=1t+1, goto 2

12

Cloth Simulation Flow

1. Init xg, vg, At, t =0

2. Compute Av from x;, v¢
o AV = MU (X441, Vig1) x At

o Newton’s method
3. X1 = Xt + Vi1 ¥ AL, Vi) = Vi + AV
4. Xy41,Vig1 = resolve_collision (Xsy1, Vii1)

t=t+1, goto 2

13

Collision Response

e Collision Detection: dist(node;,face;,t) < J, where ¢ is the cloth thickness,
and ¢ 1s some time between two steps.

e Objective: introduce minimum energy to avoid collision:

dist(node,, face;,t) — 6 > 0

Cee =n-: [(03133 + 014134) _ (alccl + (12{132)]

/ C,vf =n- [a:4 — (a1 + asxo + 033’33)]

EE Impact VF Impact

14

Collision Response

e (Collision Detection: dist(nodei,facej,t) < ¢, where 0 is the cloth thickness,
and ¢ 1s some time between two steps.

e Objective: introduce minimum energy to avoid collision:
dist(node;, face;,t) — 6 > 0
e Constraint formulation: Gx +h < 0

e Objective formulation: Quadratic Programming:

1
minimize 5(2 —x)"W(z — x)

subjectto Gz +h <0

15

Mesh Simulation Flow: Backpropagation

Gradient computation available?
Init X0, V0, _\t t =20 ‘/ Handled by auto-differentiation

Compute Av from x;, v¢
o AV = MU (x441, Vigr) * At ?

o Newton’s method

it_|_1 = Xt + {;t—i—l X .AZL, {’t-i-l = Vi + AV ‘/ Handled by auto-differentiation
X¢41, Vig1 = resolve_collision (X1 1, V1) ?
t =1+ l, gOtO . ‘/ Handled by auto-differentiation

16

Mesh Simulation Flow: Backpropagation

Gradient computation available?

1.
2.

Init xg, v, At, t =0

Compute Av from x;, v¢
o Av = M_lf(xtﬂa Vi) * At

o Newton’s method
Xt+1 = Xt + Vi1 % AL, Vi) = Vi + Av
X¢41, Vig1 = resolve_collision (X¢41, Vi41)

t=t+1, goto 2

v

\/ Using implicit differentiation!

v
?
v

17

Implicit Differentiation: Linear Solve

e Formulation: Ma = f

e Input: Mand f Output:a

on use 2L oc oL
e Back propagation: use 9 to compute P and oF

o L :the loss function.

18

Implicit Differentiation: Linear Solve

. oL oL oL .
Back propagation: use —to compute ——and —, where /[is the loss
° propag Oa P oM of L
function.
e Implicit differentiation form: Maa — Of — 81\7[a
e Solution: 9L _ _ T 9L _ T
poc d.z o — da

where d, is computed from MTda — g_ﬁT, and z is the solution of Ma = f,

19

Mesh Simulation Flow: Backpropagation

Gradient computation available?

1.
2.

Init xg, v, At, t =0

Compute Av from x;, v¢
o Av = M_lf(xtﬂa Vi) * At

o Newton’s method
Xt+1 = Xt + Vi1 % AL, Vi) = Vi + Av
X¢41, Vig1 = resolve_collision (X¢41, Vi41)

t=t+1, goto 2

v

v
v

\/ Using implicit differentiation!

v

20

Gradients of Collision?

y=0

05+

A f(t)

415

0.5

Collision Handling

e Objective formulation: Quadratic Programming

1
minimize 5(2 —x)"W(z — x)

subjectto Gz +h <0

z: optimized vertex positions
W: weight matrix
G, h: constraint matrices

22

Gradients of Collision Response

e Karush-Kuhn-Tucker (KKT) condition:

Wz* —Wx+ G '\ =0
D(\)(Gz*+h) =0

e Implicit differentiation:

W GT 0z] [Mox—dGT\
DOV)G D(Gz* + h)} {m] = [—D(/*)((‘?Gz* + Oh)

z: current vertex positions

W: weight matrix

G, h: constraint matrices

A: Augmented Lagrangian multiplier
D(): diagonalize operator

*: optimization output

23

Gradients of Collision Response

Solution:

% e g[8

oL .
-8—X_de

oL . * * T * 31
o =Dz - X
oL .p .

o = —dID(\"),

where dz and dA is provided by the linear equation:

0

24

Acceleration of Gradient Computation

[e = %]

e Linear system of n+m
o n: DOFs in the impacts
o m: number of constraints/impacts

e Insight: Optimized point moves along the
tangential direction w.r.t. constraint gradient

Gz+h<0

Gz+h>0

25

Acceleration of Gradient Computation

[e = %]

e Linear system of n+m
o n: DOFs in the impacts
o m: number of constraints/impacts

e Insight: Optimized point moves along the
tangential direction w.r.t. constraint gradient

Gz+h<0

Gz+h>0

26

Acceleration of Gradient Computation

e EXxplicit solution of the linear equation:
= g2 T
d,=vW (I-QQ") VW —

\—1lp—1AT ~19L "
dy=D\)""RTQ' vW o
where Q and R is obtained from:

VW 'GT =QR

e Theoretical speedup: O((n+m)3?) — O(nm?)
o n: number of vertices
o m: number of constraints

Gz+h<0

Gz+h>0

27

Content

e Results

28

Experimental Results

e Ablation study
o Backpropagation speedup
e Applications

o Material estimation

o Motion control

29

Ablation Study

e Speed improvement in backpropagation
e Scene setting: a large piece of cloth crumpled inside a pyramid

30

Results

e Speed improvement in backpropagation
e Scene setting: a large piece of cloth crumpled inside a pyramid

Mesh Baseline Ours Speedup
resolution Matrix size Runtime (s) Matrix size Runtime (s) Matrix size Runtime
16x16 599 + 76 0.33 + 0.13 66 + 26 0.013 + 0.0019 8.9 25
32%32 1326+ 23 1.24+0.10 97 + 24 0.011 £ 0.0023 13 112
64x64 2024 274 4.6 +£0.33 242 + 47 0.072 £+ 0.011 8.3 64

The runtime performance of gradient computation is significantly improved

by up to two orders of magnitude.
31

Material Estimation

e Scene setting: A piece of cloth hanging under gravity and a constant wind
force.

32

Results

e Application: Material estimation
e Scene setting: A piece of cloth hanging under gravity and a constant wind

force.
Method Runtime Density Non-Ln Streching Ln Streching Bending Stiffness Simulation
(sec/stepliter) Error (%) Stiffness Error (%) Stiffness Error (%) Error (%) Error (%)
Baseline - 68 + 46 74 + 23 160 £+ 119 70 £+ 42 12 + 3.0
L-BFGS [30] 2.89 + 0.02 42 +5.6 64 + 34 72 £ 90 70 +43 49+33
Ours 2.03 + 0.06 1.8 +2.0 57 +£29 45 + 41 77 £+ 36 1.6 +14

Our method achieves the fastest speed and the smallest overall error.

Application: Material Estimation

Motion Control - Optimization

."; o :
Baseline - Point Mass QOurs

34

http://www.youtube.com/watch?v=ipIM-c4lCJ0&t=20

Motion Control

e Scene setting: A piece of cloth being lifted and dropped to a basket.

35

Results

Application: Motion control
Scene setting: A piece of cloth being lifted and dropped to a basket.

Method Error (%) Samples
Point Mass 111 —
PPO [18] 432 10,000
Ours 17 53
Ours+FC 39 108

Our method achieves the best performance with a much smaller
number of simulations.

36

Application: Motion Control

Motion Control - Optimization

."; o :
Baseline - Point Mass QOurs

37

http://www.youtube.com/watch?v=ipIM-c4lCJ0&t=50

Conclusion

e Differentiable simulation

o Applicable to optimization tasks

o Embedded in neural networks for learning and control

e Fast backpropagation for collision response

38

Future Work

e Optimization of the computation graph

o Vectorization

o PyTorch3D/DiffTaichi
e Integrate with other materials

o Rigid body, deformable body, articulated body, etc

39

Q&A

40

