

#### Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation

RAN LUO, The University of New Mexico, WEIWEI XU, Zhejiang University TIANJIA SHAO, University of Leeds HONGYI XU, Google AI YIN YANG, Clemson University



# **Deformable Objects**

High-quality deformable simulation is importantWell-known problem but computational expensive

$$\mathbf{M}(\mathbf{u}_{n+1} - \mathbf{u}_n - \Delta t \dot{\mathbf{u}}_n) = \Delta t^2 (\mathbf{f}_{int}(\mathbf{u}_{n+1}) + \mathbf{f}_{ext})$$

Nonlinearity: repeated evaluation of internal force and its gradient





# Nonlinearity

A key challenge is the nonlinearity
 Largely come from the strain energy

Define strain-stress relation just based on the strain energy

$$E_{NH} = \lambda (J-1)^2 + \mu (J^{-2/3}I_1 - 3)$$
  
where  $J = |\mathbf{F}|$ ,  $I_1 = \operatorname{tr}(\mathbf{F}^{\top}\mathbf{F})$ ,  $\mathbf{F} = \mathbf{I} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$   
More complicated energies are not uncommon



[Martin et al, 2011]



[Xu et al, 2015]



## Will a Numerical Derivative Work?

The best-known method is finite difference  $f(x_0 + h) = f(x_0) + f'(x_0) \cdot h + \mathbf{O}(h^2)$   $f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h} + \mathbf{O}(h)$ 

Does not work in general due to the subtractive cancellation
In theory, the smaller perturbation is, the better approximation we obtain
In practice, smaller perturbation does not converge, explode at certain



#### Will a Numerical Derivative Work?



Newton method



#### Will a Numerical Derivative Work?



Forward difference



# **Rounding Error**

We have **limited** digits to represent a real numberPrecision depends on how many digits we could allocate

*a* = 1999.99,  

$$\tilde{a} = 1.999 \times 10^{3}$$
 $E_{round} = \frac{|a - \tilde{a}|}{|a|} = \frac{|1999.99 - 1.999 \times 10^{3}|}{|1999.99|} \approx 4.95 \times 10^{-4}$ 

**C** Known as **machine epsilon** ( $\sim 1.1 \times 10^{-16}$  for **double** precision)

- However, it is NOT the evil of finite difference
- True problem appears when we have a subtraction between two similar values



# **Subtractive Cancellation**

Another example  $a = 1999.99, \ \tilde{a} = 1.999 \times 10^3 \text{ and } b = 1998.88, \ \tilde{b} = 1.998 \times 10^3$  $E_{subtraction} = \frac{\left| (\tilde{a} - \tilde{b}) - (a - b) \right|}{|a - b|}$  $= \frac{\left| (1999.99 - 1.998) \times 10^3 - (1999.99 - 1998.88) \right|}{|1999.99 - 1998.88|}$ = 0.1

Subtraction eliminates the first three significant digits

Rounding eliminates the least important digit

Bigger perturbation has bigger approximation error but smaller perturbation leads to subtractive cancellation



## **Complex Step Finite Difference (CSFD)**

Apply the perturbation with **complex** Tayler expansion  $f^{*}(x_{0} + hi) = f^{*}(x_{0}) + f^{*'}(x_{0}) \cdot (hi) + \mathbf{O}(h^{2})$  $y = f(x_0)$   $f(x_0)$   $f(x_0)$  $\operatorname{Im}(f^{*}(x_{0}+hi)) = \operatorname{Im}(f^{*}(x_{0})+f^{*'}(x_{0})\cdot(hi)) + \mathbf{O}(h^{3})$  $f'(x_0) = \frac{\text{Im}(f^*(x_0 + hi))}{h} + \mathbf{O}(h^2)$  $x_0$  $\lim_{k \to \infty} \left( f^*(x_0 + hi) \right)$ x

SCHOOL OF COMPUTING

#### **Complex Step Finite Difference (CSFD)**



## **Too Good to Be True?**

Promoting the original real function to a complex function
Can be easily implemented especially given a good complex library
It could also be expensive (orders of magnitude in some cases)

$$f(x_0) = x_0^{\frac{1}{m}} \to f^*(x_0 + hi) = r^{\frac{1}{m}} \left( \cos \frac{\phi + 2\pi k}{m} + \sin \frac{\phi + 2\pi k}{m} i \right)$$

CSFD can be accelerated

- A full complex promotion is a waste (only imaginary part is needed)
- Perturbation is a very small value, can be treated as an infinitesimal
- Higher order h term can be discarded



# An Example

Full promotion  

$$f(x_0) = x_0^{1/m} \to f^*(x_0 + hi) = r^{1/m} \left( \cos \frac{\phi + 2\pi k}{m} + \sin \frac{\phi + 2\pi k}{m} i \right)$$

Imaginary only  
$$\frac{\operatorname{Im}(f^*(x_0 + hi))}{h} = \frac{1}{h} \left( r^{1/m} \cdot \sin \frac{\phi}{m} \right)$$

By treating *h* as an infinitesimal

$$\frac{1}{h}\left(r^{1/m}\cdot\sin\frac{\phi}{m}\right) = \frac{1}{h}\left(r^{1/m}\cdot\frac{\phi}{m}\right) = \frac{1}{h}\left(r^{1/m}\cdot\frac{h}{rm}\right) = \frac{r^{1/m}}{rm}$$

| Full promotion      | 13.1 sec         |
|---------------------|------------------|
| Imaginary only      | 9.49 sec         |
| Infinitesimal trick | 0.056 sec (233X) |
| Analytic            | 0.064 sec        |



# **Composite Functions**

Functions in real-world applications are complicated involving
 A chain of binary operators f(x) = f<sub>1</sub>(x) of<sub>2</sub>(x) or of<sub>k</sub>(x)
 Nested operators f(x) = f<sub>1</sub>(f<sub>2</sub>(f<sub>3</sub>(···)))

The key idea: isolate the propagation of imaginary perturbation
Let f<sub>1</sub>(x) = a<sub>1</sub> + b<sub>1</sub> etc., we have f<sub>1</sub>(x) · f<sub>2</sub>(x) = (a<sub>1</sub> + b<sub>1</sub>)a<sub>2</sub> + (a<sub>1</sub> + b<sub>1</sub>)b<sub>2</sub>
Each time a new f<sub>k</sub> comes, number of addends doubles with an a<sub>k</sub> and a b<sub>k</sub> appended



## **Complicated Functions (cont.)**

The path to leaf determines the shape of an addend
 An a<sub>k</sub> is the real part value and b<sub>k</sub> is the perturbation (imaginary)
 We do not need any leaves with more than two b<sub>k</sub>

• We could pre-compute product of all  $a_k$ 

$$A = a_1 \cdot a_2 \cdot a_3 \quad a_1 a_2 b_3 = \frac{A}{a_3} b_2$$





# **Higher-order Derivative & Tensor**

■ Multi-complex number, recursively defined  $\mathbb{C}^n = \{z_1 + z_2 i_n, z_1, z_2 \in \mathbb{C}^{n-1}\}$ 

□We can have MC Tayler expansion, and MSCFD becomes

$$f^{(n)}(x) = \frac{\text{Im}\left(f^{*}(x_{0} + hi_{1} + hi_{2} + \dots + hi_{n})\right)}{h^{n}} + \mathbf{O}(h^{2})$$

Cauchy-Riemann formulation extends CSFD/MSCFD to tensor functions

$$z^{n} = z_{1}^{n-1} + z_{2}^{n-1} i_{n} = \begin{bmatrix} z_{1}^{n-1} & -z_{2}^{n-1} \\ z_{2}^{n-1} & z_{1}^{n-1} \\ z_{2}^{n-1} & z_{1}^{n-1} \end{bmatrix}$$



#### **Derivative of Matrix Inverse**



$$\frac{\partial f}{\partial X_{2,2}} = -\mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{2,2}} \mathbf{X}^{-1}$$

$$\frac{\partial^2 f}{\partial X_{2,2}^2} = -2\mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{2,2}} \mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{2,2}} \mathbf{X}^{-1}$$



#### **Highly Accurate in Simulation**





#### **Intuitive Hyperelastic Simulation**

Our material

Hyperelastic models with minor implementation efforts **CSFD/MSCFD** further enables us to design customized energy  $E_{volume} = \mu (J^{-2/3}I_C - 3) + \frac{\lambda}{2} \log (1 - 4(J - 1)^2)$ 5 •Our penalty 4.5 Neo-Hookean penalty Volume penalty 3.5 3 2.5 1.5 Stable Neo-Hookean material 0.5

0.8 0.85 0.9 0.95

|**F** 

1.05 1.1 1.15 1.2

SCHOOL OF COMPUTING

#### **Intuitive Hyperelastic Simulation**

#### Intuitive Hyperelastic Simulation

CSFD/MCSFD enables intuitive simulations of hyperelastic materials.



#### **More Customized Energy**





#### **Model Derivative for All**



CSFD/MCSFD allows us to build modal subspaces for complicated materials.



## **Convenient Inverse Design**





#### **Thank You**





We are hiring ③

