

Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation

RAN LUO, The University of New Mexico, WEIWEI XU, Zhejiang University
TIANJIA SHAO, University of Leeds
HONGYI XU, Google AI
YIN YANG, Clemson University

Deformable Objects

\square High-quality deformable simulation is important
\square Well-known problem but computational expensive

$$
\mathbf{M}\left(\mathbf{u}_{n+1}-\mathbf{u}_{n}-\Delta t \dot{\mathbf{u}}_{n}\right)=\Delta t^{2}\left(\mathbf{f}_{i n t}\left(\mathbf{u}_{n+1}\right)+\mathbf{f}_{e x t}\right)
$$

" Nonlinearity: repeated evaluation of internal force and its gradient

[Zheng \& James, 2012]

[Zhao \& Barbič, 2013]

[Xu et al, 2014]

Nonlinearity

\square A key challenge is the nonlinearity

- Largely come from the strain energy
- Define strain-stress relation just based on the strain energy

$$
\begin{aligned}
& E_{N H}=\lambda(J-1)^{2}+\mu\left(J^{-2 / 3} I_{1}-3\right) \\
& \text { where } J=|\mathbf{F}|, \quad I_{1}=\operatorname{tr}\left(\mathbf{F}^{\top} \mathbf{F}\right), \quad \mathbf{F}=\mathbf{I}+\frac{\partial \mathbf{u}}{\partial \mathbf{x}}
\end{aligned}
$$

\square More complicated energies are not uncommon

[Martin et al, 2011]

Will a Numerical Derivative Work?

\square The best-known method is finite difference

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot h+\mathbf{O}\left(h^{2}\right)
$$

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}+\mathbf{O}(h)
$$

\square Does not work in general due to the subtractive cancellation - In theory, the smaller perturbation is, the better approximation we obtain - In practice, smaller perturbation does not converge, explode at certain

Will a Numerical Derivative Work?

Newton method

Will a Numerical Derivative Work?

Forward difference

Rounding Error

\square We have limited digits to represent a real number
\square Precision depends on how many digits we could allocate

$$
\begin{aligned}
& a=1999.99, \quad E_{\text {round }}=\frac{|a-\tilde{a}|}{|a|}=\frac{\left|1999.99-1.999 \times 10^{3}\right|}{|1999.99|} \approx 4.95 \times 10^{-4}, ~ \\
& \tilde{a}=1.999 \times 10^{3}
\end{aligned}
$$

\square Known as machine epsilon ($\sim 1.1 \times 10^{-16}$ for double precision)

- However, it is NOT the evil of finite difference
" True problem appears when we have a subtraction between two similar values

Subtractive Cancellation

\square Another example $a=1999.99, \tilde{a}=1.999 \times 10^{3}$ and $b=1998.88, \tilde{b}=1.998 \times 10^{3}$

$$
\begin{aligned}
E_{\text {subtraction }} & =\frac{|(\tilde{a}-\tilde{b})-(a-b)|}{|a-b|} \\
& =\frac{\left|(1999.99-1.998) \times 10^{3}-(1999.99-1998.88)\right|}{|1999.99-1998.88|} \\
& =0.1
\end{aligned}
$$

\square Subtraction eliminates the first three significant digits

- Rounding eliminates the least important digit
\square Bigger perturbation has bigger approximation error but smaller perturbation leads to subtractive cancellation

Complex Step Finite Difference (CSFD)

\square Apply the perturbation with complex Tayler expansion

$$
\begin{aligned}
& f^{*}\left(x_{0}+h i\right)=f^{*}\left(x_{0}\right)+f^{* \prime}\left(x_{0}\right) \cdot(h i)+\mathbf{O}\left(h^{2}\right) \\
& \operatorname{Im}\left(f^{*}\left(x_{0}+h i\right)\right)=\operatorname{Im}\left(f^{*}\left(x_{0}\right)+f^{* \prime}\left(x_{0}\right) \cdot(h i)\right)+\mathbf{O}\left(h^{3}\right) \\
& f^{\prime}\left(x_{0}\right)=\frac{\operatorname{Im}\left(f^{*}\left(x_{0}+h i\right)\right)}{h}+\mathbf{O}\left(h^{2}\right)
\end{aligned}
$$

Complex Step Finite Difference (CSFD)

${ }^{10}$) to fully
order of

$$
\begin{aligned}
& f(x)=\frac{e^{x}}{x^{4}+x^{2}+1} \\
& f^{\prime}(x)=\frac{x^{4}-4 x^{3}+x^{2}-2 x+1}{x^{4}+x^{2}+1} e^{x}
\end{aligned}
$$

Too Good to Be True?

\square Promoting the original real function to a complex function
"Can be easily implemented especially given a good complex library

- It could also be expensive (orders of magnitude in some cases)

$$
f\left(x_{0}\right)=x_{0}^{\frac{1}{m}} \rightarrow f^{*}\left(x_{0}+h i\right)=r^{\frac{1}{m}}\left(\cos \frac{\phi+2 \pi k}{m}+\sin \frac{\phi+2 \pi k}{m} i\right)
$$

\square CSFD can be accelerated
" A full complex promotion is a waste (only imaginary part is needed)
" Perturbation is a very small value, can be treated as an infinitesimal

- Higher order h term can be discarded

An Example

\square Full promotion

$$
f\left(x_{0}\right)=x_{0}^{1 / m} \rightarrow f^{*}\left(x_{0}+h i\right)=r^{1 / m}\left(\cos \frac{\phi+2 \pi k}{m}+\sin \frac{\phi+2 \pi k}{m} i\right)
$$

\square Imaginary only

$$
\frac{\operatorname{Im}\left(f^{*}\left(x_{0}+h i\right)\right)}{h}=\frac{1}{h}\left(r^{1 / m} \cdot \sin \frac{\phi}{m}\right)
$$

Full promotion	13.1 sec
Imaginary only	9.49 sec
Infinitesimal trick	$0.056 \mathrm{sec}(233 \mathrm{X})$
Analytic	0.064 sec

\square By treating h as an infinitesimal

$$
\frac{1}{h}\left(r^{1 / m} \cdot \sin \frac{\phi}{m}\right)=\frac{1}{h}\left(r^{1 / m} \cdot \frac{\phi}{m}\right)=\frac{1}{h}\left(r^{1 / m} \cdot \frac{h}{r m}\right)=\frac{r^{1 / m}}{r m}
$$

Composite Functions

\square Functions in real-world applications are complicated involving

- A chain of binary operators $f(x)=f_{1}(x) \circ f_{2}(x) \circ \cdots \circ f_{k}(x)$
" Nested operators $f(x)=f_{1}\left(f_{2}\left(f_{3}(\cdots)\right)\right)$
\square The key idea: isolate the propagation of imaginary perturbation
\square Let $f_{1}(x)=a_{1}+b_{1}$ etc., we have $f_{1}(x) \cdot f_{2}(x)=\left(a_{1}+b_{1}\right) a_{2}+\left(a_{1}+b_{1}\right) b_{2}$
"Each time a new f_{k} comes, number of addends doubles with an a_{k} and a b_{k} appended

Complicated Functions (cont.)

\square The path to leaf determines the shape of an addend
$\square \operatorname{An} a_{k}$ is the real part value and b_{k} is the perturbation (imaginary)
"We do not need any leaves with more than two b_{k}
"We could pre-compute product of all a_{k}

$$
A=a_{1} \cdot a_{2} \cdot a_{3} \quad a_{1} a_{2} b_{3}=\frac{A}{a_{3}} b_{2}
$$

Higher-order Derivative \& Tensor

\square Multi-complex number, recursively defined

$$
\mathbb{C}^{n}=\left\{z_{1}+z_{2} i_{n}, z_{1}, z_{2} \in \mathbb{C}^{n-1}\right\}
$$

\square We can have MC Tayler expansion, and MSCFD becomes

$$
f^{(n)}(x)=\frac{\operatorname{Im}\left(f^{\star}\left(x_{0}+h i_{1}+h i_{2}+\cdots+h i_{n}\right)\right)}{h^{n}}+\mathbf{O}\left(h^{2}\right)
$$

\square Cauchy-Riemann formulation extends CSFD/MSCFD to tensor functions

$$
z^{n}=z_{1}^{n-1}+z_{2}^{n-1} i_{n}=\left[\begin{array}{cc}
z_{1}^{n-1} & -z_{2}^{n-1} \\
z_{2}^{n-1} & z_{1}^{n-1}
\end{array}\right]
$$

Derivative of Matrix Inverse

$$
\begin{aligned}
\frac{\partial f}{\partial X_{2,2}} & =-\mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{2,2}} \mathbf{X}^{-1} \\
\frac{\partial^{2} f}{\partial X_{2,2}^{2}} & =-2 \mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{2,2}} \mathbf{X}^{-1} \frac{\partial \mathbf{X}}{\partial X_{2,2}} \mathbf{X}^{-1}
\end{aligned}
$$

Perturbation size

Highly Accurate in Simulation

Accurate Nonlinear Optimization

Using CSFD/MCSFD can accurately simulate nonlinear deformable objects.

Intuitive Hyperelastic Simulation

\square Hyperelastic models with minor implementation efforts
\square CSFD/MSCFD further enables us to design customized energy

$$
E_{\text {volume }}=\mu\left(J^{-2 / 3} \boldsymbol{T}\right.
$$

Our material

Intuitive Hyperelastic Simulation

Intuitive Hyperelastic Simulation

CSFD/MCSFD enables intuitive simulations of hyperelastic materials.

SCHOOL OF COMPUTING

More Customized Energy

Model Derivative for All

Expressive Model Reduction

CSFD/MCSFD allows us to build modal subspaces for complicated materials.

Convenient Inverse Design

Thank You

We are hiring ()

