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Deformable Objects

❑High-quality deformable simulation is important

❑Well-known problem but computational expensive

 Nonlinearity: repeated evaluation of internal force and its gradient

[Zheng & James, 2012] [Zhao & Barbič, 2013] [Xu et al, 2014]

…

[Teng et al, 2015]



Nonlinearity

❑A key challenge is the nonlinearity
 Largely come from the strain energy

 Define strain-stress relation just based on the strain energy

❑More complicated energies are not uncommon 
， 𝐅 = 𝐈 +

𝜕𝐮

𝜕𝐱
，where

[Martin et al, 2011] [Xu et al, 2015]



Will a Numerical Derivative Work?

❑The best-known method is finite difference

❑Does not work in general due to the subtractive cancellation
 In theory, the smaller perturbation is, the better approximation we obtain

 In practice, smaller perturbation does not converge, explode at certain
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Will a Numerical Derivative Work?

Newton method



Will a Numerical Derivative Work?

Forward difference



Rounding Error

❑We have limited digits to represent a real number

❑Precision depends on how many digits we could allocate

❑Known as machine epsilon (                  for double precision) 
 However, it is NOT the evil of finite difference

 True problem appears when we have a subtraction between two similar 
values

1999.99,a =

31.99 109a = 

3

4
1999.99 1. 0999

| | 1 9

1
4.95 1

.9
0

999
round

a a
E

a

−


=  
−−

=

161.1 10−



Subtractive Cancellation

❑Another example 1999.99,a = 31.99 109a = 
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❑Subtraction eliminates the first three significant digits
 Rounding eliminates the least important digit 

❑Bigger perturbation has bigger approximation error but 
smaller perturbation leads to subtractive cancellation



Complex Step Finite Difference (CSFD)

❑Apply the perturbation with complex Tayler expansion
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Complex Step Finite Difference (CSFD)

❑We can have very small perturbation (            ) to fully 
approach to the target
 The approximate error can be reduced to the same order of 

machine epsilon 

 As accurate as analytic derivative

4010−

4 2
( )

1

x

f
e

x
x x

=
+ +

4 3 2

4 2

4 2 1
( )

1

xx x x
f x

x

x
e

x

− + − +
 =

+ +



Too Good to Be True?

❑Promoting the original real function to a complex function 
 Can be easily implemented especially given a good complex library

 It could also be expensive (orders of magnitude in some cases)

❑CSFD can be accelerated
 A full complex promotion is a waste (only imaginary part is needed)

 Perturbation is a very small value, can be treated as an infinitesimal 

 Higher order h term can be discarded



An Example

❑Full promotion
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❑By treating h as an infinitesimal 
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Full promotion 13.1 sec

Imaginary only 9.49 sec

Infinitesimal trick 0.056 sec (233X)

Analytic 0.064 sec



Composite Functions

❑Functions in real-world applications are complicated involving
 A chain of binary operators

 Nested operators

❑The key idea: isolate the propagation of imaginary perturbation  

❑Let                       etc., we have   
 Each time a new    comes, number of addends doubles with an      and a     

appended 
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Complicated Functions (cont.)

❑The path to leaf determines the shape of an addend

❑An     is the real part value and     is the perturbation (imaginary)
 We do not need any leaves with more than two

 We could pre-compute product of all
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Higher-order Derivative & Tensor 

❑Multi-complex number, recursively defined

❑We can have MC Tayler expansion, and MSCFD becomes

❑Cauchy-Riemann formulation extends CSFD/MSCFD to tensor 
functions
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Derivative of Matrix Inverse



Highly Accurate in Simulation



Intuitive Hyperelastic Simulation

❑Hyperelastic models with minor implementation efforts

❑CSFD/MSCFD further enables us to design customized energy
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Intuitive Hyperelastic Simulation



More Customized Energy



Model Derivative for All



Convenient Inverse Design



Thank You

https://github.com/lrquad/MCSFD

We are hiring ☺

https://github.com/lrquad/MCSFD

