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OUTLINE

▸ Material Point Method (MPM) 

▸ Grid-particle transfer 

▸ Force computation 

▸ Simulation and visualization of ductile fracture 

▸ Yield surfaces 

▸ Mesh-processing 

▸ Discussion



Particle count:    200,000 
Simulation time:        35 
Mesh-process time:      16

THE 
MATERIAL 
POINT 
METHOD



▸ Particles for state 

▸ Grid for computations 

▸ Interpolation between particles and grid 

▸ Similar to FEM: Vertices for state, Mesh for computations

ROUGH ALGORITHM

MATERIAL POINT METHOD (MPM)
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PARTICLE-GRID TRANSFER

INTERPOLATION SCHEME

▸ Compactly supported kernel function 

▸ Spline: C1 (C2) piecewise-polynomial

N̂(x)

Quadratic Cubic



INTERPOLATION SCHEME

▸ Tensor product: 

▸ Compute weights: 

▸ Partition of unity 

▸ Barycentric embedding 

▸ Conservation of momenta, non-increasing energy

N(x) = N̂(x)N̂(y)N̂(z)
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INTERPOLATION SCHEME
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PIC, FLIP, APIC, RPIC, ……
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PARTICLE-GRID TRANSFER



▸ Particle In Cell (PIC): Harlow 1964 

▸ Fluid Implicit Particle (FLIP): Brackbill and Ruppel 1986 

▸ Affine Particle In Cell (APIC): Jiang et al.  2015  

▸ Rigid Particle In Cell (RPIC): Jiang et al.  2015 

▸ Polynomial Particle In Cell (PolyPIC): Fu et al. 2017 

▸ Extended Particle In Cell (XPIC): Hammerquist et al. 2017

PIC, FLIP, APIC, RPIC, ……

PARTICLE-GRID TRANSFER



ROUGH ALGORITHM

mn
i = TransferP2G(mp)

vn
i = TransferP2G(vn

p )

fni = ComputeForce()
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ṽn+1
i = vn

i +
�t

mn
i

fni

vn+1
p = TransferG2P(ṽn+1
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FORCE COMPUTATION

DEFORMATION GRADIENT
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FORCE COMPUTATION

DEFORMATION GRADIENT

mesh-based forces: 
F per triangle

particle-based forces:
F per particle
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FORCE COMPUTATION

FORCE AS ENERGY GRADIENT

▸ First Piola-Kirchoff stress 

▸ Total potential energy  

▸ ``F is a function of x” 

▸ Energy is a function of x 

▸ Force can be computed from x
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FORCE COMPUTATION

HYPER-ELASTIC MODELS

▸ St. Venant Kirchhoff potential with Hencky strain 

▸ (Easy for analytical plastic projection)

F = U⌃VT

 (F) = µtr((ln⌃)2) +
�

2
(tr(ln⌃))2
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FORCE COMPUTATION

FINITE ELEMENT ELEMENT
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FORCE COMPUTATION
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FORCE COMPUTATION

LAGRANGIAN MPM

� =
X

e

V 0
e  (Fe)

Fn
e =

X

q

xn
qrNq(Xe)

T

fni =
X

q

!n
iqf

n
q



Particle count:    4,000 
Simulation time:       5 
Mesh-process time:   0.2

SIMULATION 
AND  
VISUALIZATION  
OF  
DUCTILE  
FRACTURE



RANKINE YIELD SURFACE [MÜLLER ET AL. 2014]

▸ Constraining maximal principal stress

▸ Mode I yielding (tension)

▸ Softening rule
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◆

YIELD SURFACES



Particle count:    130,000 
Simulation time:        15 
Mesh-process time:       8



VON MISES (J2) YIELD SURFACE

▸ Constraining shear stress

▸ Mode II and III yielding (shear)

▸ Softening can be added

y(⌧) = k⌧ � tr(⌧)IkF � ⌧C  0

YIELD SURFACES



⌧C/E = 0.5

⌧C/E = 0.7

⌧C/E = 1

Particle count:    60,000 
Simulation time:       11 
Mesh-process time:      4
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MESH-PROCESSING

THREE STEPS OF CREATING FRACTURING MESH

▸ Fracturing topology (that evolves with time) 

▸ Extrapolate positions for the added vertices 

▸ Smoothing crack surface to reduce mesh-dependent noise 

▸ Advantage: per-frame post-process instead of per-time-step 
treatment
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MESH-PROCESSING

FRACTURING TOPOLOGY
duplicated vertices
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MESH-PROCESSING
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▸ Subdivided mesh 

▸ Edge-stretching 
cutting criterion 

▸ Evolves with time

FRACTURING TOPOLOGY
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MESH-PROCESSING

1                                 2                                   3                                   4                                   5

▸ Granular view 

▸ Locally rigid motion 

▸ Merging vertices 
based on topology

1                                 2                                   3                                   4                                   5

EXTRAPOLATING POSITIONS FOR ADDED VERTICES



MESH-PROCESSING

SMOOTHING CRACK SURFACE





MESH-PROCESSING

SMOOTHING CRACK SURFACE

1                                    2                                    3                                    4                                  5

▸ Collect all ever broken 
edges 

▸ Gauss-Siedel 
smoothing 

▸ Smooth only the 
undeformed 
configuration

1                                    2                                    3                                    4                                  5



DISCUSSION

LIMITATIONS AND FUTURE DIRECTIONS

▸ Crack patterns can be affected by particle sampling density, mesh 
topology, grid resolution 

▸ Finding appropriate parameters for edge-stretching threshold and 
crack smoothing iterations 

▸ Exploring different yield surfaces and flow rules



NUMERICAL METHODS

MESH V.S. PARTICLE

Particle-based forces 
(grid velocity updated F)

Mesh-based forces 
(mesh geometry updated F)

Delaunay mesh for visualization requires quality mesh for simulation

has artificial fracture no artificial fracture

6-8 particles per cell 2 particles per cell

automatic self-collision

easy coupling with other MPM material





Small grid dx

Large grid dx

Lagrangian

Particle count:    8,000 
Simulation time:     0.6 
Post-process time:   0.5



Particle count:  2,290,000 
Element count:     930,000 
Simulation time:        50 
Mesh-process time:       5
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Particle count:   5,500 - 77,000 
Simulation time:    0.2 - 2 
Mesh-process time:  0.3 - 5


