
SIMULATION AND VISUALIZATION OF
DUCTILE FRACTURE WITH THE
MATERIAL POINT METHOD (MPM)

Stephanie Wang
University of California — Los Angeles

May 6th, 2020

Particle count: 77,000
Simulation time: 2
Mesh-process time: 5

COLLABORATORS

▸ PhD Advisor: Joseph Teran, UCLA

▸ Xuchen Han, UCLA

▸ Qi Guo, UCLA

▸ Mengyuan Ding, UCLA

▸ Steven Gagniere, UCLA

▸ Leyi Zhu, University of Science and Technology of
China

▸ Theodore Gast, JIXIE EFFECTS (UCLA)

▸ Chenfanfu Jiang, University of Pennsylvania (UCLA)

Particle count: 60,000
Simulation time: 11
Mesh-process time: —-

Particle count: 60,000
Simulation time: 11
Mesh-process time: 5

Particle count: 207,000
Simulation time: 16
Mesh-process time: 13

Particle count: 207,000
Simulation time: 16
Mesh-process time: 13

Particle count: 207,000
Simulation time: 16
Mesh-process time: 13

OUTLINE

▸ Material Point Method (MPM)

▸ Grid-particle transfer

▸ Force computation

▸ Simulation and visualization of ductile fracture

▸ Yield surfaces

▸ Mesh-processing

▸ Discussion

Particle count: 200,000
Simulation time: 35
Mesh-process time: 16

THE
MATERIAL
POINT
METHOD

▸ Particles for state

▸ Grid for computations

▸ Interpolation between particles and grid

▸ Similar to FEM: Vertices for state, Mesh for computations

ROUGH ALGORITHM

MATERIAL POINT METHOD (MPM)

ROUGH ALGORITHM

mn
i = TransferP2G(mp)

vn
i = TransferP2G(vn

p)

fni = ComputeForce()

ṽn+1
i = vn

i +
�t

mn
i

fni

vn+1
p = TransferG2P(ṽn+1

i)

xn+1
p = xn

p +�tvn+1
p (Beware!

MATERIAL POINT METHOD (MPM)

mp

vn
i

xn+1
p

notation meaning when where

position after
forces particle

velocity before
forces grid

mass never
changes particle

ROUGH ALGORITHM

mn
i = TransferP2G(mp)

vn
i = TransferP2G(vn

p)

fni = ComputeForce()

ṽn+1
i = vn

i +
�t

mn
i

fni

vn+1
p = TransferG2P(ṽn+1

i)

xn+1
p = xn

p +�tvn+1
p (Beware!

MATERIAL POINT METHOD (MPM)

mp

vn
i

xn+1
p

notation meaning when where

position after
forces particle

velocity before
forces grid

mass never
changes particle

PARTICLE-GRID TRANSFER

INTERPOLATION SCHEME

▸ Compactly supported kernel function

▸ Spline: C1 (C2) piecewise-polynomial

N̂(x)

Quadratic Cubic

INTERPOLATION SCHEME

▸ Tensor product:

▸ Compute weights:

▸ Partition of unity

▸ Barycentric embedding

▸ Conservation of momenta, non-increasing energy

N(x) = N̂(x)N̂(y)N̂(z)

PARTICLE-GRID TRANSFER

wn
ip = N(xn

i � xn
p)

rwn
ip = rN(xn

i � xn
p)

X

i

wn
ip = 1

X

i

wn
ipx

n
i = xn

p

INTERPOLATION SCHEME

TransferP2G
mn

i =
X

p

wn
ipmp Mass

mn
i v

n
i =

X

p

wn
ipmpv

n
p Momentum

Mass

Momentum

TransferG2P
vn+1
p =

X

i

wn
ipṽ

n+1
i

PARTICLE-GRID TRANSFER

Kernel at particle

Kernel at node

PIC, FLIP, APIC, RPIC, ……

mn
i =

X

p

wn
ipmp

vn
i =

1

mn
i

X

p

wn
ipmpv

n
p

fni = ComputeForce()

ṽn+1
i = vn

i +
�t

mn
i

fni

vn+1
p =

X

i

wn
ipṽ

n+1
i

xn+1
p = xn

p +�tvn+1
p

mn
i =

X

p

wn
ipmp

Dn
p =

X

i

wn
ip(x

n
i � xn

p)(x
n
i � xn

p)
T

vn
i =

1

mn
i

X

p

wn
ipmp(v

n
p +Bn

p (D
n
p)

�1(xn
i � xn

p))

fni = ComputeForce()

ṽn+1
i = vn

i +
�t

mn
i

fni

vn+1
p =

X

i

wn
ipṽ

n+1
i

Bn+1
p =

X

i

wn
ipv

n
i (x

n
i � xn

p)
T

xn+1
p = xn

p +�tvn
p

Particle In Cell (PIC)
Affine Particle In Cell (APIC)

PARTICLE-GRID TRANSFER

▸ Particle In Cell (PIC): Harlow 1964

▸ Fluid Implicit Particle (FLIP): Brackbill and Ruppel 1986

▸ Affine Particle In Cell (APIC): Jiang et al. 2015

▸ Rigid Particle In Cell (RPIC): Jiang et al. 2015

▸ Polynomial Particle In Cell (PolyPIC): Fu et al. 2017

▸ Extended Particle In Cell (XPIC): Hammerquist et al. 2017

PIC, FLIP, APIC, RPIC, ……

PARTICLE-GRID TRANSFER

ROUGH ALGORITHM

mn
i = TransferP2G(mp)

vn
i = TransferP2G(vn

p)

fni = ComputeForce()

ṽn+1
i = vn

i +
�t

mn
i

fni

vn+1
p = TransferG2P(ṽn+1

i)

xn+1
p = xn

p +�tvn+1
p (Beware!

MATERIAL POINT METHOD (MPM)

mp

vn
i

xn+1
p

notation meaning when where

velocity before
forces grid

position after
forces particle

mass never
changes particle

ROUGH ALGORITHM

mn
i = TransferP2G(mp)

vn
i = TransferP2G(vn

p)

fni = ComputeForce()

ṽn+1
i = vn

i +
�t

mn
i

fni

vn+1
p = TransferG2P(ṽn+1

i)

xn+1
p = xn

p +�tvn+1
p (Beware!

MATERIAL POINT METHOD (MPM)

mp

vn
i

xn+1
p

notation meaning when where

velocity before
forces grid

position after
forces particle

mass never
changes particle

FORCE COMPUTATION

DEFORMATION GRADIENT

F

xa

xbXb

Xa

x = �(X, t)

F(X, t) =
@�

@X
(X, t)

⌦0 ⌦t

FORCE COMPUTATION

DEFORMATION GRADIENT

mesh-based forces:
F per triangle

particle-based forces:
F per particle

� =
X

e

V 0
e (Fe) � =

X

p

V 0
p (Fp)

FORCE COMPUTATION

FORCE AS ENERGY GRADIENT

▸ First Piola-Kirchoff stress

▸ Total potential energy

▸ ``F is a function of x”

▸ Energy is a function of x

▸ Force can be computed from x

P(F) =
@

@F
(F)

� =
X

p

V 0
p (Fp)

Fn+1
p =

I+�t

X

i

vi(r!n
ip)

T

!
Fn

p

fi = � @�

@xi

fi = � @�

@xi
= �

X

p

V 0
p

✓
@

@F
(Fp(x))

◆
(Fn

p)
Tr!n

ip

Fn
e =

X

q

xn
qrNq(Xe)

T

FORCE COMPUTATION

HYPER-ELASTIC MODELS

▸ St. Venant Kirchhoff potential with Hencky strain

▸ (Easy for analytical plastic projection)

F = U⌃VT

 (F) = µtr((ln⌃)2) +
�

2
(tr(ln⌃))2

@

@F
= U(2µ⌃�1 ln⌃+ �tr(ln⌃)⌃�1)VT

FORCE COMPUTATION

FINITE ELEMENT ELEMENT

FORCE COMPUTATION

FINITE ELEMENT ELEMENT

FORCE COMPUTATION

FINITE ELEMENT ELEMENT

FORCE COMPUTATION

FINITE ELEMENT ELEMENT

� =
X

e

V 0
e (Fe)

� =
X

e

V 0
e (Fe)

Fn
e =

X

q

xn
qrNq(Xe)

T

Fn
e =

X

q

xn
qrNq(⇠e)

T

!
X

q

XqrNq(⇠e)
T

!�1

PARTICLE MPM

FORCE COMPUTATION

FORCE COMPUTATION

PARTICLE MPM

FORCE COMPUTATION

PARTICLE MPM

FORCE COMPUTATION

PARTICLE MPM

FORCE COMPUTATION

PARTICLE MPM

FORCE COMPUTATION

PARTICLE MPM

FORCE COMPUTATION

PARTICLE MPM

FORCE COMPUTATION

PARTICLE MPM

� =
X

p

V 0
p (Fp)

Fn+1
p =

I+�t

X

i

vi(r!n
ip)

T

!
Fn

p

FORCE COMPUTATION

LAGRANGIAN MPM

� =
X

e

V 0
e (Fe)

Fn
e =

X

q

xn
qrNq(Xe)

T

fni =
X

q

!n
iqf

n
q

Particle count: 4,000
Simulation time: 5
Mesh-process time: 0.2

SIMULATION
AND
VISUALIZATION
OF
DUCTILE
FRACTURE

RANKINE YIELD SURFACE [MÜLLER ET AL. 2014]

▸ Constraining maximal principal stress

▸ Mode I yielding (tension)

▸ Softening rule

y(⌧) = max
kuk=kvk=1

uT ⌧v � ⌧C 0

⌧n+1
C = ⌧nC + ↵

✓
max

kuk=kvk=1
uT ✏n+1v � max

kũk=kṽk=1
ũT ✏trṽ

◆

YIELD SURFACES

Particle count: 130,000
Simulation time: 15
Mesh-process time: 8

VON MISES (J2) YIELD SURFACE

▸ Constraining shear stress

▸ Mode II and III yielding (shear)

▸ Softening can be added

y(⌧) = k⌧ � tr(⌧)IkF � ⌧C 0

YIELD SURFACES

⌧C/E = 0.5

⌧C/E = 0.7

⌧C/E = 1

Particle count: 60,000
Simulation time: 11
Mesh-process time: 4

Particle count: 60,000
Simulation time: 11
Mesh-process time: 5

MESH-PROCESSING

THREE STEPS OF CREATING FRACTURING MESH

▸ Fracturing topology (that evolves with time)

▸ Extrapolate positions for the added vertices

▸ Smoothing crack surface to reduce mesh-dependent noise

▸ Advantage: per-frame post-process instead of per-time-step
treatment

MESH-PROCESSING

FRACTURING TOPOLOGY

MESH-PROCESSING

FRACTURING TOPOLOGY

MESH-PROCESSING

FRACTURING TOPOLOGY

MESH-PROCESSING

FRACTURING TOPOLOGY

MESH-PROCESSING

FRACTURING TOPOLOGY

MESH-PROCESSING

FRACTURING TOPOLOGY
duplicated vertices

MESH-PROCESSING

FRACTURING TOPOLOGY

MESH-PROCESSING

FRACTURING TOPOLOGY

MESH-PROCESSING

1 2 3 4 5 6

1 2 3 4 5 6

▸ Subdivided mesh

▸ Edge-stretching
cutting criterion

▸ Evolves with time

FRACTURING TOPOLOGY

MESH-PROCESSING

EXTRAPOLATING POSITIONS FOR ADDED VERTICES

MESH-PROCESSING

EXTRAPOLATING POSITIONS FOR ADDED VERTICES

MESH-PROCESSING

EXTRAPOLATING POSITIONS FOR ADDED VERTICES

MESH-PROCESSING

EXTRAPOLATING POSITIONS FOR ADDED VERTICES

MESH-PROCESSING

EXTRAPOLATING POSITIONS FOR ADDED VERTICES

MESH-PROCESSING

EXTRAPOLATING POSITIONS FOR ADDED VERTICES

MESH-PROCESSING

EXTRAPOLATING POSITIONS FOR ADDED VERTICES

MESH-PROCESSING

1 2 3 4 5

▸ Granular view

▸ Locally rigid motion

▸ Merging vertices
based on topology

1 2 3 4 5

EXTRAPOLATING POSITIONS FOR ADDED VERTICES

MESH-PROCESSING

SMOOTHING CRACK SURFACE

MESH-PROCESSING

SMOOTHING CRACK SURFACE

1 2 3 4 5

▸ Collect all ever broken
edges

▸ Gauss-Siedel
smoothing

▸ Smooth only the
undeformed
configuration

1 2 3 4 5

DISCUSSION

LIMITATIONS AND FUTURE DIRECTIONS

▸ Crack patterns can be affected by particle sampling density, mesh
topology, grid resolution

▸ Finding appropriate parameters for edge-stretching threshold and
crack smoothing iterations

▸ Exploring different yield surfaces and flow rules

NUMERICAL METHODS

MESH V.S. PARTICLE

Particle-based forces
(grid velocity updated F)

Mesh-based forces
(mesh geometry updated F)

Delaunay mesh for visualization requires quality mesh for simulation

has artificial fracture no artificial fracture

6-8 particles per cell 2 particles per cell

automatic self-collision

easy coupling with other MPM material

Small grid dx

Large grid dx

Lagrangian

Particle count: 8,000
Simulation time: 0.6
Post-process time: 0.5

Particle count: 2,290,000
Element count: 930,000
Simulation time: 50
Mesh-process time: 5

ACKNOWLEDGEMENT
The work is supported by NSF CCF-1422795, ONR (N000141110719, N000141210834), DOD
(W81XWH15-1-0147), Intel STC-Visual Computing Grant (20112360) as well as a gift from Adobe Inc.

THANKS FOR LISTENING!

Particle count: 5,500 - 77,000
Simulation time: 0.2 - 2
Mesh-process time: 0.3 - 5

