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3D in CV/CG before DL Age

Multiple View
Geometry

In computer vision

PCL features




Recent Hype of 3D DL

Acquire Knowledge of 3D World by Learning

A priori knowledge of
the 3D world
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Core Algorithms Invented

* Classification

Volumetric CNN, OctNet, O-CNN, SparseConvNet, PointNet, PointNet+
+, RS CNN, DGCNN, Point ConvNet, KPConv, Monte Carlo Point
Convolution, PConv, Multi-View CNN, Spectral CNN, Synchronized
Spectral CNN, Spherical CNN, ...

 Detection/Segmentation

Sliding shape, 3D-SIS, Frustum PointNet, Point R-CNN, VoteNet, GSPN,
SGPN, JSIS3D, ContFuse, PointPillar, Second, ...

» Synthesize/Reconstruction

3D Autoencoder, PointSetGenNet, OctGenNet, AtlasNet, DeepSDF,
Occupancy Networks, Implicit Fields, MarrNet, StructNet, SDGAN,

PointSetGAN, MVS, SurfaceNet, RMVS, PMVS, BA-Net, ......



Datasets Built

Indoor Scene |Outdoor
Scene

Synthetic ShapeNet, ShapeNetPart, SceneNet vKITTI, Cala
ModelNet PartNet,

Shape2Motion

3DScan ScanNet KITTI,
Semantic KITT,
Waymo Open
Dataset




My Tutorials on 3D Deep Learning

* 90min Summary (2020 March version):

https://youtu.be/viL6udYFrp4

* Can be found from my homepage: http://ai.ucsd.edu/~haosu



http://ai.ucsd.edu/~haosu
https://youtu.be/vfL6uJYFrp4

Timely to Think About Three Questions

» Many core algorithms developed.

 But:

1. How large is the performance gap for current
algorithms to support downstream applications?

2. What kind of new 3D deep learning problems
have to be addressed?

3. What efforts may be needed to build new
benchmarks?



Exploratory Robots

- Human-beings learn the unknowns via exploring the
physical world

* An exploratory robot learn the environment dynamics
via collecting interaction experience




Object Manipulation

https://phys.org/mews/2017-06-grasp.html



https://phys.org/news/2017-06-grasp.html
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Sensing




* Reconstruction
« Detection
« Segmentation

A4

Sensing

Knowledge
Base




Structured
Virtual Model

* Reconstruction
« Detection

_ Knowledge




Structured
Virtual Model

Grasp proposal
Plan synthesis/subgoal prediction

ot _ ) Knowledge
Collision estimation Base

Inverse dynamics prediction




Structured
Virtual Model

- Forward dynamics prediction

Knowledge
Base




Policy

Analyze

Structured
Virtual Model
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Knowledge
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Structured
Virtual Model

Experiences

Knowledge
Base




Structured
Virtual Model

Experiences

« Structure discove Distillation

Knowledge
- Property discovery Base

* Relationship discovery
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Sampled Research Work (I)

Learning-based 3D Reconstruction

Deep Stereo using Adaptive Thin Volume Representation with
Uncertainty Awareness, Shuo*, Xu*, et al. CVPR 2020 (oral)

Normal Assisted Stereo Depth Estimation,
Kusupati, et al. CVPR 2020



Base
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Virtual Model
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Multi-View Stereo (MVS)

Reconstruct the dense 3D shape from a set of images
and camera parameters
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1. Goldlucke et al. “A Super-resolution Framework for High-Accuracy Multiview Reconstruction”



Requirements of MVS

T|me Com utation

Remote Sensing ***** **
Autonomous Driving **** ** **** ****

AR/VR ok Yokok  Yokokkok dokkokok
Robot Manipulation * **** *** ****

Inverse Engineering * ***** ** **



Reconstruction from Photo-Consistency

NCC (Normalized Cross Correlation)
Z:L‘,y<W1 (T y) - V[/_fl)(WQ(I y) — WQ)

OwW,0W,

SSD (Sum Squared Distance)

> Wz, y) — Walz,y)|?
T,y

* Requires texture
« Sensitive to Non-lambertian area

Image source: UW CSE455



Cost-Volume-based MVS

Multi-view images and camera parameters




Cost-Volume-based MVS

Build 3D cost volume in reference view frustum




Topdown View of Cost Volume
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Cost-Volume-based MVS

Fetch images features for each voxel
« Voxel in ground truth surface shows feature consistency




Cost-Volume-based MVS

Dense 3D CNNs




Cost-Volume-based MVS

Are all these 3D CNNs necessary?




Cost-Volume-based MVS

« Convolution operations far from ground truth surface
IS wasting

Cost-volume Target surface



High-level Idea

Previous: This work:
Partition the space uniformly =~ Coarse-to-fine solution

Adaptive sampling



Probability volume Probability distribution

Py = : ______________________ : . ..../\\.....

Depth min Depth max

At the first stage, we uniformly sample the depth
hypothesis and predict probability of depth



Probability volume

Uncertainty Estimation

Probability distribution



Uncertainty Aware Warping

Depth min Depth max



Form a New Cost Volume

Uniform Spatially-varying
depth hypotheses depth hypotheses



Narrowing Process Visualization

RGB Image GT depth Our prediction RGB Image GT depth Our prediction
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Y axis: probability
X axis: depth values
Purple region: estimated uncertainty



Point Cloud Comparison

Stage 1 Stage 2

gradually densify the local geometry



Speed & Memory Comparison

Method Running Memory Input size  Prediction
tme (s) (MB) size
One stage 0.065 1309 160x120
Two stages 0.114 1607 640x480 320x240
Our full model 0.257 1647 640x480
MVSNet [ ] 1.049 4511 640x480 160x120
R-MVSNet [ V] 1.421] 4261 640x480 160x120

Table 5: Performance comparisons. We show the running
time and memory of our method by running the first stage,
the first two stages and our full model.



Resolution (Speed) is OK.
But Difficulty Still Exists

Weak texture or repetitive patterns




Resolution (Speed) is OK.
But Difficulty Still Exists

GT point cloud Predicted point cloud




High-order Differential Quantity
Is Easier to Estimate

GT normal Predicted normal

Normal Prediction is Easier
(from single view)



Depth-Normal Joint Learning
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Multi-View Normal Estimation

FxHxWxD

( (+3)«HxWxD
- Feature
Cost Volume
IxH«xW=xD

Foature
U Cont Volume

World Coordinate
Volume



Multi-View Normal Estimation
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World Coordinate
Volume




Multi-View Normal Estimation




Multi-View Normal Estimation




Multi-View Normal Estimation Result




Overall Architecture
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Overall Architecture

Consistency

Modue




Overall Architecture
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Qualitative results

Ground Truth Ours
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Sampled Research Work (ll)

Grasp Proposal Prediction

S4G: Amodal Single-view Single-Shot SE(3) Grasp Detection in
Cluttered Scenes, Qin*, Chen*, et al. CoRL 2019
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 Exploratory robot needs to infer the structure, hence
functionality, of the environment

» Reconstruction only does not permit interaction!

u‘b':-

Source: Boston Dynamics
Source: Nvidia Robotics Research
Source: Eckovation

Source: MCube Lab



Primary Action: Grasping

Most structure action requires first to grasp the object before
any specific action

1. Approach the object with appropriate direction
2. Grasp and hold the object
3. Execute object-specific manipulation

The ability to grasp any object is the
preliminary for efficient robot exploration



Antipodal Grasp




Current Fashion: Data-driven

- Formulate grasping as a object-detection problem

* Represent grasp pose as bounding box
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Redmon et al., “Real-Time Grasp Detection Using
Convolutional Neural Networks”, ICRA 2015



2D Detection-based Grasping
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Limit approach direction to top-down

Not applicable for highly-free exploration



Grasp in SE(3)



3D Geometry-based Grasping

- Utilize 3D representation for grasp evaluation

 Detect grasp poses based on geometric structure but
not object semantics

- Better generalizability to unknown objects (PC has
smaller domain gap than images)

Gripper Closing Area

Z

(a) (b)

Liang et al., “PointNetGPD: Detecting Grasp
Configuration from Point Sets”, ICRA 2015



Challenge for Geometry-based Grasping

 High-quality grasp is hard to annotate

« Human do not know either

- Infinite answers for an single object
- Grasp pose in 3D is hard to regress

- Representation of S E(3)

- Low quality of current commodity 3D sensor



Problem Setting of S4G

- Single-view: only see partial point cloud
- Commercial Kinect2: noisy sensing
» 6 Degree of Freedom: No direction limitation

- Clutter scene: stacked objects with occlusion



: SE(3) Grasp Generation from
3D Point Cloud

S*G
Amodal Single-view Single-Shot SE(3)

Grasp Detection
in Cluttered Scenes

Conference on Robot Learning 2019, #47

Qin et al., “S4G:Amodal Single-view Single-Shot SE(3)
Grasp Detection in Cluttered Scenes”, CoRL 2019




High-level Idea

« Sim2Real+Imitation Learning



High-level Idea

« Sim2Real+Imitation Learning

* For objects in training data
« sample grasps (gripper pose)
» verify by force closure (using full geometry)

 record good ones on the shape surface (grasp
pose function defined on the surface)



High-level Idea

« Sim2Real+Imitation Learning

* For objects in training data
« sample grasps (gripper pose)
» verify by force closure (using full geometry)

 record good ones on the shape surface (grasp
pose function defined on the surface)

« Simulate partial scan of objects in the training data



High-level Idea

« Sim2Real+Imitation Learning (Search+NN)

* For objects in training data
« sample grasps (gripper pose)
» verify by force closure (using full geometry)

 record good ones on the shape surface (grasp
pose function defined on the surface)

« Simulate partial scan of objects in the training data

» Use neural network to learn the grasp pose function
from partial scans



Search For Object-Centric Grasps

- Enumerate possible grasps based on local geometry
around contact points

Average Normal

Classical: Daboux Frame Ours



Search For Object-Centric Grasps

- Verify by force-closure (can resist external forces)

Average Normal

Surface Normal



Good Grasps as Surface Function

Regression grasp pose precisely is hard globally

- The size of arena: 1.5m
- However, 1.5 cm (1%) error is large enough for failure

- Solution: regress local poses
* In dataset, register each grasp with nearest point
 Predict local offset with respect to this point

Gripper Frame
Origin

‘-.
-
-

A;‘.signed Point

Average Normal

“~ Surface Normal



Scene-level Considerations

» Collision checking with the whole scene

- Render depth from different views as input for network




Single-shot Grasp Proposal

- Input: single-view observation

 Output: grasp poses and corresponding quality scores

Scene Point Cloud

oooooooo

Grasp quality



PointNet++: Extract Hierarchical Features

Local features:
* How to grasp the object

Global features:
- Avoid collision with other object
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Quantitative Result

Outperform other SOTA methods with large
margin in accuracy and efficiency

Grasp quality Time-efhiciency
SUCCESS rale cCompletion rate TEProcess Inference

PD (3 channels 1)) 600 24103 ms 1.50 ms 3.27 ms

Cllcliliil 3D () { UIMNS ! LIS +. D011

PommtNetGPD 1) .(0) 6) () | 7687 ms ) SOMsS 6./ 3ms

-—I({ ‘)3,;{( .;()17”]\



Discussion

e Main error source
« Low depth map quality (precision+completeness)

Cheap and high-quality 3D sensor is vital
« Sim2Real:
* Model trained on sim directly applied on real:

* RGB information is not used in this work

Point Cloud representation: lower domain gap



So far, Purely Mechanics-based

 Exploratory robot should use manipulation as a mean
to verify structure hypothesis of objects
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Sampled Research Work (lll)

Structure Hypothesis Generation:
Zero-shot 3D Part Proposal

Learning to Group: A Bottom-Up Framework for 3D Part Discovery in
Unseen Categories, Luo et al. ICLR 2020



Sensing » Analyze

Knowledge
Base




Task

Data in Knowledge Base New Data

L@

Training set and test set are of different categories,
but reuse local structures




Why Few-shot/Zero-shot Learning in 3D?

Algorithmically, 3D shapes are:

* easier to be related (correspondence)
 easier to be compared

e easier to abstracted




Revisit 3D Part Segmentation

» Learning-Based Methods
 Fully Convolutional [PartNet-InsSeg, Mo et al.]
* Clustering Based [SGPN, Wang et al.]
« Segmentation by Synthesis [GSPN, Yi et al.]

Train on chair, storage furniture and lamp, Test on faucet

o

Fully Conv Clustering Seg by Synth Reference



Revisit 3D Part Segmentation

 Traditional Methods
« Use part geometry heuristics
 convexity, flatness, etc [WCSeg, Kaick et al.]

Train on chair, storage furniture and lamp, Test on faucet

X

i &

Fully Conv Clustering Seg by Synth Reference Traditional




Key Idea

Incorporating global context is likely to hurt zero-shot
generalization.

Should be parsimonious in using context information.



Our Approach

Sub-Part Pool



Our Approach

Sub-Part Pool

Policy
Module




Our Approach

Sub-Part Pool

Policy
Module

N Verification
Module



Our Approach

Sub-Part Pool If False

Policy § Verification
Module Module




Our Approach

Sub-Part Pool If False

Policy R § Verification
Module Module



Our Approach

Sub-Part Pool If False

Policy R § Verification
Module Module




Our Approach

Sub-Part Pool If True

Policy § Verification
Module Module




Our Approach

Sub-Part Pool If True

Policy § Verification
Module Module




Our Approach




Qualitative Results

GSPN SGPN WCSeg PartNet Ours Reference

Train on chair, storage furniture, and lamp.
Test on bed and faucet, respectively.



Quantitative Results

. Seen Catego | . Unseen Categ ’
@[ 57 | B aglwag OB 5 0| O B [ B

PartNet 553 1503 234 | 43 | 474 182 97 407 1735 303|293 436 | 321 165

SGPN 422 [ 442 115|326 36 214 | 7 467 | 533 277 | 87 348 | 289 255

GSPN ' 307 | 437 144 [ 326 35 344 | 84 469 | 728 406 | 406 578 | 367 284
WCSeg 331 [ 568 32 | 31 | 314 419 86 563|693 342|276 597 302 373

Our 506 | 57 21.7 [ 431 456 416 | 104 492 | 722 424 | 31.2 67 | 372 33

| Unseen Category _
Yxﬂ £ | . / o a; rb E oo | F9 1) Avg  WAv
PartNet 166 | 525 04 | 336 @ 821 296 | 33 08 389 12 2 33 8| 312 35.71

SGPN 20 | 37 04 | 31 | 613 12 | 133 59 64 348 | 78 275 | 244 308
TGSPN 253 317 04 | 189 929 | 393 [ 406 264 | 37 | 346 | 127 414 | 351 | 347

WCSeg 482 | 487 03 (601 648 308 46 195 | 39 314|123 29 | 379 335

Ours | 30.9 | 341 04 | 441 966 343 483 266 167 440 | 13 431 | 389 421

Train on chair, storage furniture, and lamp.
Test on both seen categories and unseen categories.
Number is the average recall.
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Sampled Research Work (1V)

Environment For End-to-End Learning
& Evaluation of Interaction Tasks

SAPIEN: A SimulAted Part-based Interactive ENvironment,
Xiang et al. CVPR 2020 (oral)



An Accessible Platform to Explore
Object Manipulation Problems

- Real robot/experiments are costly

« When it comes robotics planning/execution

« Time: cannot speed up real-world physics

 Cost: costly to maintain hardware

- Hardware stability: hard to reproduce experiments
- Safety

« Alternative: Simulation



SAPIEN

Xiang et al., “SAPIEN: A SimulAted Part-based Interactive ENvironment”, CVPR 2020



SAPIEN System
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SAPIEN Renderer ' SAPIEN Engine SAPIEN Asset
[Pr— Renderer interface - - PhysX Physical Simulator e -
————  PartNet-Mobility Dataset
*  RGBD Workd Articulation
~» GLSL Shaders ‘&: Normal 7 Interface Iinterface L Robot Model -«
Segmenitation v+ ROS Interface I
Sensor Controller | Object Layout -

| h traci e
» OptiX Shaders + Ray tracing "1 Interface Interface

Renderer/Visuallzer Sensor Controller Controlier Motion Planning Bulider

Customizable 3Dy Force/Joinb/Velocity Trajectory Inverse Kinematics RobotScene



SAPIEN

Xiang et al., “SAPIEN: A SimulAted Part-based Interactive ENvironment”, CVPR 2020



SAPIEN Asset
PartNet-Mobility Dataset




Task Demonstrations



Task Demonstrations

Movable Part
Segmentation

— > |




Task Demonstrations

Movable Part
Segmentation
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Motion Parameter
Estimation
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Task Demonstrations

Movable Part
Segmentation

—>

Motion Parameter
Estimation

—>

%ﬂ Manipulation
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Task Demonstrations

Movable Part
Segmentation

Motion Parameter
Estimation

» Long-horizon
PIannlng
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Usage Information

* pip install sapien
* http://sapien.ucsd.edu
* SAPIEN Challenge to come later in the year



http://sapien.ucsd.edu

Conclusion

We still have a long way to go to develop really useful
learning algorithms for building exploratory robots!

« Sensing, Representation, Composable Unit
Discovery, ...



