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3D in CV/CG before DL Age

…



Recent Hype of 3D DL
Acquire Knowledge of 3D World by Learning





Core Algorithms Invented
• Classification
Volumetric CNN, OctNet, O-CNN, SparseConvNet, PointNet, PointNet+
+, RS CNN, DGCNN, Point ConvNet, KPConv, Monte Carlo Point 
Convolution, PConv, Multi-View CNN, Spectral CNN, Synchronized 
Spectral CNN, Spherical CNN, …

• Detection/Segmentation
Sliding shape, 3D-SIS, Frustum PointNet, Point R-CNN, VoteNet, GSPN, 
SGPN, JSIS3D, ContFuse, PointPillar, Second, …

• Synthesize/Reconstruction
3D Autoencoder, PointSetGenNet, OctGenNet, AtlasNet, DeepSDF, 
Occupancy Networks, Implicit Fields, MarrNet, StructNet, 3DGAN, 
PointSetGAN, MVS, SurfaceNet, RMVS, PMVS, BA-Net, ……



Datasets Built

Object Part Indoor Scene Outdoor 
Scene

Synthetic ShapeNet, 
ModelNet

ShapeNetPart, 
PartNet,
Shape2Motion

SceneNet vKITTI, Cala

Real 3DScan ScanNet KITTI, 
Semantic KITT, 
Waymo Open 
Dataset



My Tutorials on 3D Deep Learning

• 90min Summary (2020 March version):

• Can be found from my homepage: http://ai.ucsd.edu/~haosu

https://youtu.be/vfL6uJYFrp4

http://ai.ucsd.edu/~haosu
https://youtu.be/vfL6uJYFrp4


Timely to Think About Three Questions
• Many core algorithms developed.

• But: 

1. How large is the performance gap for current 
algorithms to support downstream applications?

2. What kind of new 3D deep learning problems 
have to be addressed?

3. What efforts may be needed to build new 
benchmarks?



Exploratory Robots
• Human-beings learn the unknowns via exploring the 

physical world

• An exploratory robot learn the environment dynamics 
via collecting interaction experience

1. Source: otteroo.com 
2. Source: Andy Zeng



Object Manipulation

Credit: Bielefeld University
https://phys.org/news/2017-06-grasp.html

https://phys.org/news/2017-06-grasp.html
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• Task representation
• Grasp proposal
• Plan synthesis/subgoal prediction
• Collision estimation
• Inverse dynamics prediction
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• Forward dynamics prediction
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Distillation
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• Structure discovery
• Property discovery
• Relationship discovery



Sampled Research Work (I)

Learning-based 3D Reconstruction

Deep Stereo using Adaptive Thin Volume Representation with 
Uncertainty Awareness, Shuo*, Xu*, et al. CVPR 2020 (oral)

Normal Assisted Stereo Depth Estimation,  
Kusupati, et al. CVPR 2020
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Multi-View Stereo (MVS)
Reconstruct the dense 3D shape from a set of images 
and camera parameters

1. Goldlucke et al. “A Super-resolution Framework for High-Accuracy Multiview Reconstruction”



Requirements of MVS

Applications Range Accuracy Time 
Efficiency

Computation 
Efficiency

Remote Sensing

Autonomous Driving

AR/VR

Robot Manipulation

Inverse Engineering



SSD (Sum Squared Distance)

NCC (Normalized Cross Correlation)

Reconstruction from Photo-Consistency

Image source: UW CSE455

• Requires texture 
• Sensitive to Non-lambertian area



Multi-view images and camera parameters

Cost-Volume-based MVS



Cost-Volume-based MVS
Build 3D cost volume in reference view frustum



Topdown View of Cost Volume



Cost-Volume-based MVS
Fetch images features for each voxel 

• Voxel in ground truth surface shows feature consistency



Cost-Volume-based MVS
Dense 3D CNNs



Cost-Volume-based MVS

Are all these 3D CNNs necessary?



Cost-Volume-based MVS
• Convolution operations far from ground truth surface 

is wasting 

Cost-volume Target surface



High-level Idea

Previous: 

Partition the space uniformly 

This work:  

Coarse-to-fine solution 

Adaptive sampling



Probability volume Probability distribution

Depth min Depth max

At the first stage, we uniformly sample the depth 
hypothesis and predict probability of depth



Probability volume Probability distribution

Variance:

Uncertainty Estimation

Depth min Depth max



Depth min Depth max

Uncertainty Aware Warping



Form a New Cost Volume

Spatially-varying   
depth hypotheses

Uniform 
depth hypotheses



Narrowing Process Visualization

Y axis: probability 
X axis: depth values 
Purple region: estimated uncertainty



gradually densify the local geometry

Stage 1 Stage 2 Stage 3 GT

Point Cloud Comparison



Speed & Memory Comparison



Resolution (Speed) is OK.  
But Difficulty Still Exists

Observed patches:

???

Weak texture or repetitive patterns 



GT point cloud Predicted point cloud

Resolution (Speed) is OK.  
But Difficulty Still Exists



High-order Differential Quantity 
is Easier to Estimate

GT normal Predicted normal

Normal Prediction is Easier 
(from single view)



Depth-Normal Joint Learning

Normal

Depth

Depth-Normal 
 Consistency



Multi-View Normal Estimation 



Multi-View Normal Estimation 



Multi-View Normal Estimation 



Multi-View Normal Estimation 



Multi-View Normal Estimation Result



Overall Architecture

Multi-View Normal Prediction



Overall Architecture

Multi-View Normal Prediction

Multi-View Depth Prediction



Depth-Normal Consistency

Overall Architecture

Multi-View Normal Prediction

Multi-View Depth Prediction



Qualitative results



Sampled Research Work (II)

Grasp Proposal Prediction

S4G: Amodal Single-view Single-Shot SE(3) Grasp Detection in 
Cluttered Scenes, Qin*, Chen*, et al. CoRL 2019
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• Exploratory robot needs to infer the structure, hence 
functionality, of the environment

• Reconstruction only does not permit interaction!

1. Source: Boston Dynamics 
2. Source: Nvidia Robotics Research 
3. Source: Eckovation 
4. Source: MCube Lab



Primary Action: Grasping
Most structure action requires first to grasp the object before 
any specific action

1. Approach the object with appropriate direction

2. Grasp and hold the object

3. Execute object-specific manipulation

The ability to grasp any object is the
 preliminary for efficient robot exploration



Antipodal Grasp



Current Fashion: Data-driven

Redmon et al., “Real-Time Grasp Detection Using 
Convolutional Neural Networks”, ICRA 2015

• Formulate grasping as a object-detection problem

• Represent grasp pose as bounding box



2D Detection-based Grasping

Limit approach direction to top-down

Not applicable for highly-free exploration



Grasp in SE(3)



3D Geometry-based Grasping

Liang et al., “PointNetGPD: Detecting Grasp 
Configuration from Point Sets”, ICRA 2015

• Utilize 3D representation for grasp evaluation

• Detect grasp poses based on geometric structure but 
not object semantics

• Better generalizability to unknown objects (PC has 
smaller domain gap than images)



Challenge for Geometry-based Grasping

• High-quality grasp is hard to annotate

• Human do not know either

• Infinite answers for an single object

• Grasp pose in 3D is hard to regress

• Representation of 

• Low quality of current commodity 3D sensor

 

!"(3)



Problem Setting of S4G

• Single-view: only see partial point cloud

• Commercial Kinect2: noisy sensing

• 6 Degree of Freedom:  No direction limitation

• Clutter scene: stacked objects with occlusion

Grasping in open and clutter env is still hard



S4G: SE(3) Grasp Generation from 
3D Point Cloud 

Qin et al., “S4G:Amodal Single-view Single-Shot SE(3) 
Grasp Detection in Cluttered Scenes”, CoRL 2019
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High-level Idea
• Sim2Real+Imitation Learning (Search+NN)

• For objects in training data
• sample grasps (gripper pose)
• verify by force closure (using full geometry)
• record good ones on the shape surface (grasp 

pose function defined on the surface)

• Simulate partial scan of objects in the training data 

• Use neural network to learn the grasp pose function 
from partial scans 



Search For Object-Centric Grasps
• Enumerate possible grasps based on local geometry 

around contact points

Classical: Daboux Frame Ours



Search For Object-Centric Grasps
• Verify by force-closure (can resist external forces) 



Good Grasps as Surface Function
Regression grasp pose precisely is hard globally

• The size of arena: 1.5m
• However, 1.5 cm (1%) error is large enough for failure 

• Solution: regress local poses
• In dataset, register each grasp with nearest point
• Predict local offset with respect to this point

 



Scene-level Considerations
• Collision checking with the whole scene

• Render depth from different views as input for network



Single-shot Grasp Proposal
• Input: single-view observation

• Output: grasp poses and corresponding quality scores



PointNet++: Extract Hierarchical Features
Local features:

• How to grasp the object

Global features:
• Avoid collision with other object



Quantitative Result

Outperform other SOTA methods with large 
margin in accuracy and efficiency



Discussion
• Main error source

• Low depth map quality (precision+completeness)

Cheap and high-quality 3D sensor is vital

• Sim2Real:
• Model trained on sim directly applied on real:
• RGB information is not used in this work

Point Cloud representation: lower domain gap



So far, Purely Mechanics-based
• Exploratory robot should use manipulation as a mean 

to verify structure hypothesis of objects

Source: Eckovation



Sampled Research Work (III)

Structure Hypothesis Generation: 
Zero-shot 3D Part Proposal

Learning to Group: A Bottom-Up Framework for 3D Part Discovery in 
Unseen Categories, Luo et al. ICLR 2020
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Task

Data in Knowledge Base

Training set and test set are of different categories, 
but reuse local structures

New Data



Why Few-shot/Zero-shot Learning in 3D?

Algorithmically, 3D shapes are:

• easier to be related (correspondence)

• easier to be compared

• easier to abstracted



• Learning-Based Methods
• Fully Convolutional [PartNet-InsSeg, Mo et al.] 
• Clustering Based [SGPN, Wang et al.]
• Segmentation by Synthesis [GSPN, Yi et al.]

Fully Conv Clustering Seg by Synth Reference

Train on chair, storage furniture and lamp, Test on faucet

Revisit 3D Part Segmentation



Revisit 3D Part Segmentation
• Traditional Methods

• Use part geometry heuristics
• convexity, flatness, etc [WCSeg, Kaick et al.]

Fully Conv Clustering Seg by Synth Reference

Train on chair, storage furniture and lamp, Test on faucet

Traditional



Key Idea

Incorporating global context is likely to hurt zero-shot 
generalization.


Should be parsimonious in using context information.
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Qualitative Results

Train on chair, storage furniture, and lamp. 
Test on bed and faucet, respectively.



Quantitative Results

Train on chair, storage furniture, and lamp. 
Test on both seen categories and unseen categories. 
Number is the average recall.



Sampled Research Work (IV)

Environment For End-to-End Learning 
& Evaluation of Interaction Tasks

SAPIEN: A SimulAted Part-based Interactive ENvironment,  
Xiang et al. CVPR 2020 (oral)



An Accessible Platform to Explore 
Object Manipulation Problems  

• Real robot/experiments are costly

• When it comes robotics planning/execution
• Time: cannot speed up real-world physics
• Cost: costly to maintain hardware
• Hardware stability: hard to reproduce experiments
• Safety

• Alternative: Simulation



SAPIEN

Xiang et al., “SAPIEN: A SimulAted Part-based Interactive ENvironment”, CVPR 2020



SAPIEN System



SAPIEN

Xiang et al., “SAPIEN: A SimulAted Part-based Interactive ENvironment”, CVPR 2020



SAPIEN Asset  
PartNet-Mobility Dataset



Task Demonstrations
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Task Demonstrations

Movable Part 
Segmentation

Motion Parameter 
Estimation

Long-horizon 
Planning Part Manipulation



• pip install sapien
• http://sapien.ucsd.edu
• SAPIEN Challenge to come later in the year

https://sapien.ucsd.edu

Requirements: Python 3, Linux / Latest MacOS

Usage Information

http://sapien.ucsd.edu


Conclusion

We still have a long way to go to develop really useful 
learning algorithms for building exploratory robots!

• Sensing, Representation, Composable Unit 
Discovery, …


