

3D Understanding Towards Object Manipulation

Some Thoughts and Progress

Hao Su

3D in CV/CG before DL Age

. . .

Recent Hype of 3D DL

Acquire Knowledge of 3D World by Learning

Core Algorithms Invented

Classification

Volumetric CNN, OctNet, O-CNN, SparseConvNet, PointNet, PointNet+ +, RS CNN, DGCNN, Point ConvNet, KPConv, Monte Carlo Point Convolution, PConv, Multi-View CNN, Spectral CNN, Synchronized Spectral CNN, Spherical CNN, ...

Detection/Segmentation

Sliding shape, 3D-SIS, Frustum PointNet, Point R-CNN, VoteNet, GSPN, SGPN, JSIS3D, ContFuse, PointPillar, Second, ...

Synthesize/Reconstruction

3D Autoencoder, PointSetGenNet, OctGenNet, AtlasNet, DeepSDF, Occupancy Networks, Implicit Fields, MarrNet, StructNet, 3DGAN, PointSetGAN, MVS, SurfaceNet, RMVS, PMVS, BA-Net,

Datasets Built

	Object	Part	Indoor Scene	Outdoor Scene
Synthetic	ShapeNet, ModelNet	ShapeNetPart, PartNet, Shape2Motion	SceneNet	vKITTI, Cala
Real	3DScan		ScanNet	KITTI, Semantic KITT, Waymo Open Dataset

My Tutorials on 3D Deep Learning

• 90min Summary (2020 March version):

https://youtu.be/vfL6uJYFrp4

Can be found from my homepage: <u>http://ai.ucsd.edu/~haosu</u>

Timely to Think About Three Questions

- Many core algorithms developed.
- But:
 - 1. How large is the performance gap for current algorithms to support **downstream applications**?
 - 2. What kind of new 3D deep learning problems have to be addressed?
 - 3. What efforts may be needed to build new benchmarks?

Exploratory Robots

- Human-beings learn the unknowns via exploring the physical world
- An exploratory robot learn the environment dynamics via collecting interaction experience

Object Manipulation

Credit: Bielefeld University https://phys.org/news/2017-06-grasp.html

- Reconstruction
- Detection
- Segmentation

- Reconstruction
- Detection
- Segmentation

- Task representation
- Grasp proposal
- Plan synthesis/subgoal prediction
- Collision estimation
- Inverse dynamics prediction

Sampled Research Work (I)

Learning-based 3D Reconstruction

Deep Stereo using Adaptive Thin Volume Representation with Uncertainty Awareness, Shuo*, Xu*, et al. CVPR 2020 (oral)

Normal Assisted Stereo Depth Estimation, Kusupati, et al. CVPR 2020

Multi-View Stereo (MVS)

Reconstruct the dense 3D shape from a set of **images** and **camera parameters**

1. Goldlucke et al. "A Super-resolution Framework for High-Accuracy Multiview Reconstruction"

Requirements of MVS

Applications	Range	Accuracy	Time Efficiency	Computation Efficiency
Remote Sensing	****	**	*	**
Autonomous Driving	****	**	****	****
AR/VR	**	***	****	****
Robot Manipulation	*	****	***	****
Inverse Engineering	*	****	**	**

Reconstruction from Photo-Consistency

NCC (Normalized Cross Correlation)

- Requires texture
- Sensitive to Non-lambertian area

Multi-view images and camera parameters

Build 3D cost volume in reference view frustum

Topdown View of Cost Volume

Fetch images features for each voxel

• Voxel in ground truth surface shows feature consistency

Dense 3D CNNs

Are all these 3D CNNs necessary?

 Convolution operations far from ground truth surface is wasting

Cost-volume

Target surface

High-level Idea

Previous:

Partition the space uniformly

This work: Coarse-to-fine solution Adaptive sampling

At the first stage, we uniformly sample the depth hypothesis and predict probability of depth

Uncertainty Estimation

Variance:
$$\hat{\mathbf{V}}_k(x) = \sum_{j=1}^{D_k} \mathbf{P}_{k,j}(x) \cdot (\mathbf{L}_{k,j}(x) - \hat{\mathbf{L}}_k(x))^2$$
,

Uncertainty Aware Warping

Form a New Cost Volume

Uniform depth hypotheses

Spatially-varying depth hypotheses
Narrowing Process Visualization

Y axis: probability X axis: depth values Purple region: estimated uncertainty

Point Cloud Comparison

gradually densify the local geometry

Speed & Memory Comparison

Method	Running time (s)	Memory (MB)	Input size	Prediction size
One stage	0.065	1309	640-400	160x120
Our full model	0.114 0.257	1607	640x480	520x240 640x480
MVSNet [58]	1.049	4511	640x480	160x120
R-MVSNet [59]	1.421	4261	640x480	160x120

Table 5: Performance comparisons. We show the running time and memory of our method by running the first stage, the first two stages and our full model.

Resolution (Speed) is OK. But Difficulty Still Exists

Weak texture or repetitive patterns

???

Resolution (Speed) is OK. But Difficulty Still Exists

GT point cloud

Predicted point cloud

High-order Differential Quantity is Easier to Estimate

GT normal

Predicted normal

Normal Prediction is Easier (from single view)

Depth-Normal Joint Learning

Multi-View Normal Estimation Result

Image

RGB based

Ours

Overall Architecture

Overall Architecture

Overall Architecture

Qualitative results

Sampled Research Work (II)

Grasp Proposal Prediction

S4G: Amodal Single-view Single-Shot SE(3) Grasp Detection in Cluttered Scenes, Qin*, Chen*, et al. CoRL 2019

- Exploratory robot needs to infer the structure, hence functionality, of the environment
- Reconstruction only does not permit interaction!

- 1. Source: Boston Dynamics
- 2. Source: Nvidia Robotics Research
- 3. Source: Eckovation
- 4. Source: MCube Lab

Primary Action: Grasping

Most structure action requires first to grasp the object before any specific action

- 1. Approach the object with appropriate direction
- 2. Grasp and hold the object
- 3. Execute object-specific manipulation

The ability to grasp any object is the preliminary for efficient robot exploration

Antipodal Grasp

Current Fashion: Data-driven

- Formulate grasping as a object-detection problem
- Represent grasp pose as bounding box

Redmon et al., "**Real-Time Grasp Detection Using Convolutional Neural Networks**", *ICRA 2015*

2D Detection-based Grasping

Limit approach direction to top-down

Grasp in SE(3)

3D Geometry-based Grasping

- Utilize 3D representation for grasp evaluation
- Detect grasp poses based on geometric structure but not object semantics
- Better generalizability to unknown objects (PC has smaller domain gap than images)

Liang et al., "PointNetGPD: Detecting Grasp Configuration from Point Sets", *ICRA 2015*

Challenge for Geometry-based Grasping

- High-quality grasp is hard to annotate
 - Human do not know either
 - Infinite answers for an single object
- Grasp pose in 3D is hard to regress
 - Representation of SE(3)
- Low quality of current commodity 3D sensor

Problem Setting of S4G

- Single-view: only see partial point cloud
- Commercial Kinect2: noisy sensing
- 6 Degree of Freedom: No direction limitation
- Clutter scene: stacked objects with occlusion

S4G: SE(3) Grasp Generation from 3D Point Cloud

S⁺G Amodal Single-view Single-Shot SE(3) Grasp Detection in Cluttered Scenes

Conference on Robot Learning 2019, #47

Qin et al., "S4G:Amodal Single-view Single-Shot SE(3) Grasp Detection in Cluttered Scenes", CoRL 2019

Sim2Real+Imitation Learning

- Sim2Real+Imitation Learning
- For objects in training data
 - sample grasps (gripper pose)
 - verify by force closure (using full geometry)
 - record good ones on the shape surface (grasp pose function defined on the surface)

- Sim2Real+Imitation Learning
- For objects in training data
 - sample grasps (gripper pose)
 - verify by force closure (using full geometry)
 - record good ones on the shape surface (grasp pose function defined on the surface)
- Simulate partial scan of objects in the training data

- Sim2Real+Imitation Learning (Search+NN)
- For objects in training data
 - sample grasps (gripper pose)
 - verify by force closure (using full geometry)
 - record good ones on the shape surface (grasp pose function defined on the surface)
- Simulate partial scan of objects in the training data
- Use neural network to learn the grasp pose function from partial scans

Search For Object-Centric Grasps

 Enumerate possible grasps based on local geometry around contact points

Classical: Daboux Frame

Search For Object-Centric Grasps

• Verify by force-closure (can resist external forces)

Good Grasps as Surface Function

Regression grasp pose precisely is hard globally

- The size of arena: 1.5m
- However, 1.5 cm (1%) error is large enough for failure
- Solution: regress local poses
 - In dataset, register each grasp with nearest point
 - Predict local offset with respect to this point

Scene-level Considerations

- Collision checking with the whole scene
- Render depth from different views as input for network

Single-shot Grasp Proposal

- Input: single-view observation
- Output: grasp poses and corresponding quality scores

PointNet++: Extract Hierarchical Features

Local features:

· How to grasp the object

Global features:

Avoid collision with other object

Quantitative Result

Outperform other SOTA methods with large margin in accuracy and efficiency

	Gras	p quality	Time-efficiency					
	Success rate	Completion rate	Preprocess	Inference	Postprocess			
GPD (3 channels)	40.0%	60.0%	24103 ms	1.50 ms	3.27 ms			
GPD (12 channels)	33.3%	50.0%	27190ms	1.70ms	4.66ms			
PointNetGPD	40.0%	60.0%	17687ms	2.86ms	6.73ms			
Ours	77.1%	92.5%	5617ms	12.60 ms	186.58 ms			

Discussion

- Main error source
 - Low depth map quality (precision+completeness)

Cheap and high-quality 3D sensor is vital

- Sim2Real:
 - Model trained on sim directly applied on real:
 - RGB information is not used in this work

Point Cloud representation: lower domain gap

So far, Purely Mechanics-based

 Exploratory robot should use manipulation as a mean to verify structure hypothesis of objects

Source: Eckovation

Sampled Research Work (III)

Structure Hypothesis Generation: Zero-shot 3D Part Proposal

Learning to Group: A Bottom-Up Framework for 3D Part Discovery in Unseen Categories, Luo et al. ICLR 2020

Task

Data in Knowledge Base New Data

Training set and test set are of different categories, but reuse local structures

Why Few-shot/Zero-shot Learning in 3D?

Algorithmically, 3D shapes are:

easier to be related (correspondence)

- easier to be compared
- easier to abstracted

Revisit 3D Part Segmentation

- Learning-Based Methods
 - Fully Convolutional [PartNet-InsSeg, Mo et al.]
 - Clustering Based [SGPN, Wang et al.]
 - Segmentation by Synthesis [GSPN, Yi et al.]

Train on chair, storage furniture and lamp, Test on faucet

Revisit 3D Part Segmentation

- Traditional Methods
 - Use part geometry heuristics
 - convexity, flatness, etc [WCSeg, Kaick et al.]

Train on chair, storage furniture and lamp, Test on faucet

Seg by Synth

Reference

Key Idea

Incorporating **global context** is likely to hurt zero-shot generalization.

Should be **parsimonious** in using context information.

Qualitative Results

Train on chair, storage furniture, and lamp. Test on bed and faucet, respectively.

Quantitative Results

	Seen Category					Unseen Category								
	÷	Ŧ	38	Avg	WAvg	Ê	ā	ê	0	۲		-		6
PartNet	55.3	50.3	23.4	43	47.4	18.2	9.7	40.7	73.5	30.3	29.3	43.6	32.1	16.5
SGPN	42.2	44.2	11.5	32.6	36	21.4	7	46.7	53.3	27.7	8.7	34.8	28.9	25.5
GSPN	39.7	43.7	14.4	32.6	35	34.4	8.4	46.9	72.8	40.6	40.6	57.8	36.7	28.4
WCSeg	33.1	56.8	3.2	31	31.4	41.9	8.6	56.3	69.3	34.2	27.6	59.7	30.2	37.3
Our	50.6	57	21.7	43.1	45.6	41.6	10.4	49.2	72.2	42.4	31.2	67	37.2	33.1
Unseen Category														
	2 ²	æ	REER	650	显	2	D	E	×	n	ŵ	Ð	Avg	WAvg
PartNet	16.6	52.5	0.4	33.6	82.1	29.6	33	25	0.8	38.9	12.2	36.8	31.2	35.7
SGPN	20	37	0.4	31	67.3	7.2	13.3	5.9	6.4	34.8	7.8	27.5	24.4	30.8
GSPN	25.3	31.7	0.4	18.9	92.9	39.2	40.6	26.4	3.7	34.6	12.7	41.4	35.1	34.7
WCSeg	48.2	48.7	0.3	60.1	64.8	30.8	46	19.5	39	31.4	12.3	29	37.9	33.5
Ours	30.9	34.1	0.4	44.1	96.6	34.3	48.2	26.6	16.7	44.1	13	43.1	38.9	42.1

Train on chair, storage furniture, and lamp. Test on both seen categories and unseen categories. Number is the average recall.

Sampled Research Work (IV)

Environment For End-to-End Learning & Evaluation of Interaction Tasks

SAPIEN: A SimulAted Part-based Interactive ENvironment, Xiang et al. CVPR 2020 (oral)

An Accessible Platform to Explore Object Manipulation Problems

- Real robot/experiments are costly
- When it comes robotics planning/execution
 - Time: cannot speed up real-world physics
 - Cost: costly to maintain hardware
 - Hardware stability: hard to reproduce experiments
 - Safety
- Alternative: Simulation

Xiang et al., "SAPIEN: A SimulAted Part-based Interactive ENvironment", CVPR 2020

SAPIEN System

Xiang et al., "SAPIEN: A SimulAted Part-based Interactive ENvironment", CVPR 2020

SAPIEN Asset PartNet-Mobility Dataset

Usage Information

- pip install sapien
- <u>http://sapien.ucsd.edu</u>
- SAPIEN Challenge to come later in the year

Conclusion

We still have a long way to go to develop really useful learning algorithms for building exploratory robots!

• Sensing, Representation, Composable Unit Discovery, ...