Language-Driven Visual Reasoning for Referring Expression Comprehension

中山大学 数据科学与计算机学院

□Introduction and Related Work

- **Cross-Modal Relationship Inference Network, CVPR 2019**
- Dynamic Graph Attention for Visual Reasoning, ICCV2019
- □Scene Graph guided Visual Reasoning, CVPR2020
- **Conclusion and Future Work Discussion**

Introduction and Related Work

- **Cross-Modal Relationship Inference Network, CVPR 2019**
- Dynamic Graph Attention for Visual Reasoning, ICCV2019
- □Scene Graph guided Visual Reasoning, CVPR2020
- **Conclusion and Future Work Discussion**

Introduction

Referring Expression Comprehension

Requires Relationship Reasoning

- 1. The hat worn by the man bending over and stroking the dog
- 2. The hat on the guy to the left of the man in the yellow shirt

Related Work

 $R^* = \arg \max_{R \in \mathcal{C}} p(R|S, I)$ $R^* = \arg \max_{R \in \mathcal{C}} p(S|R, I)$ (Nagaraja et al. ECCV2016)

 $[w_{subj}, w_{loc}, w_{rel}] = \operatorname{softmax}(W_m^T[h_0, h_T] + b_m)$ $S(o_i|r) = w_{subj}S(o_i|q^{subj}) + w_{loc}S(o_i|q^{loc}) + w_{rel}S(o_i|q^{rel})$

Modular Attention Network (CVPR2018)

□Introduction and Related Work

- **Cross-Modal Relationship Inference Network, CVPR 2019**
- Dynamic Graph Attention for Visual Reasoning, ICCV2019
- □Scene Graph guided Visual Reasoning, CVPR2020
- **Conclusion and Future Work Discussion**

Cross-Modal Relationship Inference (CVPR2019)

Motivation:

C Relationships (including first-order and multi-order) is essential for visual grounding.

Graph based information propagation helps to explicitly capture multi-order relationships.

Spatial Relation Graph Construction

bottom right (11)

$$G^{s} = (V, E, \mathbf{X}^{s})$$
$$V = \{v_{i}\}_{i=1}^{K}$$
$$\mathbf{X}^{s} = \{\mathbf{x}_{i}^{s}\}_{i=1}^{K}$$

bottom left,

bottom (10)

(9)

(e) others (4-11)

$$E = \{e_{ij}\}_{i,j=1}^{K}$$

 e_{ij} is the index label of relationship r_{ij}

(d) overlap (3)

Language-Guided Visual Relation Graph Construction

1. Given expression $L = \{l_t\}_{t=1}^T$, Bidirectional LSTM for word feature extraction $\mathbf{h}_t \in \mathbb{R}^{D_h}$

2. The type (i.e. entity, relation, absolute location and unnecessary word) for each word $\mathbf{m}_t = \operatorname{softmax}(\mathbf{W}_{l1}\sigma(\mathbf{W}_{l0}\mathbf{h}_t + \mathbf{b}_{l0}) + \mathbf{b}_{l1})$

Weighted normalized attention of word l_t refer to vertex v_i , $\begin{cases} \alpha_{t,i} = \mathbf{W}_n[\tanh(\mathbf{W}_v \mathbf{x}_i^s + \mathbf{W}_h \mathbf{h}_t)] \\ \lambda_{t,i} = \mathbf{m}_t^{(0)} \frac{\exp(\alpha_{t,i})}{\sum_i^K \exp(\alpha_{t,i})} \end{cases}$

Language-Guided Visual Relation Graph Construction

3. The gate p_i^v for vertex v_i is defined as: $p_i^v = \sum_{t=1}^{T} \lambda_{t,i}$ the gate p_j^e for edges with type $j \in \{1, 2, ...N^e\}$ is: $p_j^e = \sum_{t=1}^{T} w_{t,j}^e$

The language-guided multi-modal graph is defined as: $G^m = (V, E, \mathbf{X}^m, P^v, P^e)$

$$\mathbf{X}^m = \{\mathbf{x}^m_i\}_{i=1}^K \qquad \mathbf{x}^m_i = \begin{bmatrix} \mathbf{x}^s_i, \mathbf{c}_i \end{bmatrix}$$

Gated graph convolution operation at vertex: v_i $\overrightarrow{\mathbf{x}}_{i}^{(n)} = \sum p_{e_{i,j}}^{e} (\overrightarrow{\mathbf{W}}^{(n)} \hat{\mathbf{x}}_{j}^{(n-1)} p_{j}^{v} + \mathbf{b}_{e_{i,j}}^{(n)})$ $e_{i,i} > 0$ $\overleftarrow{\mathbf{x}_i}^{(n)} = \sum p_{e_{j,i}}^e (\overleftarrow{\mathbf{W}}^{(n)} \hat{\mathbf{x}}_j^{(n-1)} p_j^v + \mathbf{b}_{e_{j,i}}^{(n)})$ $e_{i,i} > 0$ $\widetilde{\mathbf{x}}_{i}^{(n)} = \widetilde{\mathbf{W}}^{(n)} \widehat{\mathbf{x}}_{i}^{(n-1)} + \widetilde{\mathbf{b}}^{(n)}$ $\hat{\mathbf{x}}_{i}^{(n)} = \sigma(\overrightarrow{\mathbf{x}}_{i}^{(n)} + \overleftarrow{\mathbf{x}}_{i}^{(n)} + \widetilde{\mathbf{x}}_{i}^{(n)})$ $\mathbf{X}^{c} = \{\mathbf{x}_{i}^{c} = \hat{\mathbf{x}}_{i}^{(N)}\}_{i=1}^{K}$ $\mathbf{x}_i = [\mathbf{W}_p \mathbf{p}_i, \mathbf{x}_i^c]$

Matching Score and Loss Function:

$$s_i = L2Norm(\mathbf{W}_{s0}\mathbf{x}_i) \odot L2Norm(\mathbf{W}_{s1}\mathbf{h}_g)$$

$$loss = \max(s_{neg} + \Delta - s_{gt}, 0)$$

Evaluation Datasets: RefCOCO, RefCOCO+ and RefCOCOg Evaluation Metric: Precision@1 metric (the fraction of correct predictions)

·			F	RefCOCO)	R	efCOCC)+	RefCOCC	
		feature	val	testA	testB	val	testA	testB	val	test
1	MMI [23]	vgg16	2.4	63.15	64.21	(*)	48.73	42.13		
2	Neg Bag [26]	vgg16	76,90	75.60	78.00		-	-	1.1	68.40
3	CG [22]	vgg16	1.0100-000 5. 7	74.04	73.43	100	60.26	55.03	3.00 C	-
4	Attr [19]	vgg16	84	78.85	78.07		61.47	57.22	2.2	-
5	CMN [7]	vgg16	8 .	75.94	79.57		59.29	59.34	5.00	-
6	Speaker [36]	vgg16	76.18	74.39	77.30	58.94	61.29	56.24	-	-
7	Listener [37]	vgg16	77.48	76.58	78.94	60.50	61.39	58.11	69.93	69.03
8	Speaker+Listener+Reinforcer [37]	vgg16	79.56	78.95	80.22	62.26	64.60	59.62	71.65	71.92
9	VariContext [41]	vgg16		78.98	82.39	-	62.56	62.90	-	-
10	AccumulateAttn [4]	vgg16	81.27	81.17	80.01	65.56	68.76	60.63	-	-
11	ParallelAttn [42]	vgg16	81.67	80.81	81.32	64.18	66.31	61.46	0.00	-
12	MAttNet [35]	vgg16	80.94	79.99	82.30	63.07	65.04	61.77	73.04	72.79
13	Ours CMRIN	vgg16	84.02	84.51	82.59	71.46	75.38	64.74	76.16	76.25
14	MAttNet [35]	resnet101	85.65	85.26	84.57	71.01	75.13	66.17	78.10	78.12
15	Ours CMRIN	resnet101	86.99	87.63	84.73	75.52	80.93	68.99	80.45	80.66

Comparison with state-of-the-art approaches on RefCOCO, RefCOCO+ and RefCOCOg

global langcxt+vis instance: Visual feature + location feature, last hidden unit of LSTM, matching global langcxt+global viscxt(2): GCN on the spatial relation graph weighted langcxt+guided viscxt: Gated GCN on the language-guided visual relation graph

weighted langcxt+guided viscxt+fusion: Gated GCN on cross-modal relation graph

		RefCOCO			RefCOCO+			RefCOCOg	
		val	testA	testB	val	testA	testB	val	test
1	global langext+vis instance	79.05	81.47	77.86	63.85	69.82	57.80	70,78	71.26
2	global langcxt+global viscxt(2)	82.61	83.22	82.36	67.75	73.21	63.06	74.29	75.23
3	weighted langcxt+guided viscxt(2)	85.29	86.09	84.12	73.70	79.60	67.52	78.47	79.39
4	weighted langcxt+guided viscxt(1)+fusion	85.80	86.09	83.98	73.95	78.43	67.21	79.37	78.90
5	weighted langcxt+guided viscxt(3)+fusion	86.55	87.50	84.53	75.29	80.46	68.79	80.11	80.45
6	weighted langcxt+guided viscxt(2)+fusion	86.99	87.63	84.73	75.52	80.93	68.99	80.45	80.66

Ablation study on variances of our proposed CMRIN on RefCOCO, RefCOCO+ and RefCOCOg

Visualization Results

Result

Visualization Results

"green plant behind a table visible behind a lady's head"

Input Image

Objects

Initial Attention Score

Final matching score

Result

"sandwich in center row all the way on right"

Initial Attention Score

Final matching score

Result

Input Image

Objects

□Introduction and Related Work

- **Cross-Modal Relationship Inference Network, CVPR 2019**
- Dynamic Graph Attention for Visual Reasoning, ICCV2019
- □Scene Graph guided Visual Reasoning, CVPR2020
- **Conclusion and Future Work Discussion**

Dynamic Graph Attention (ICCV2019)

A CHARTER AND A CHART AND A CH

Motivation:

Referring expression comprehension inherently requires visual reasoning on top of the relationships among the objects in the image. Example "the umbrella held by the person in the pink hat"
 Human visual reasoning of grounding is guided by the linguistic structure of the referring expression.

Our Proposed Method:

- Specify the reasoning process as a sequence of constituent expressions.
- A dynamic graph attention network to perform multi-step visual reasoning to identify compound objects by following the predicted reasoning process.

Dynamic Graph Attention Network

- 1. Graph construction
 - \succ Visual graph \rightarrow Multi-modal graph
- 2. Linguistic structure analysis
 - \succ Constituent expressions \rightarrow Guidance of reasoning

- 3. Step-wisely dynamic reasoning
 - performs on the top of the graph under the guidance
 - ➢ highlight edges and nodes → identify compound objects

Graph construction

Directed graph: $G^{I} = (V, E, \mathbf{X}^{I})$ $\mathbf{x}_{k}^{I} = [\mathbf{x}_{k}^{o}; \mathbf{p}_{k}]$ $\mathbf{p}_{k} = \mathbf{W}_{p}[x_{0k}, x_{1k}, w_{k}, h_{k}, w_{k}h_{k}]$ Multi-modal graph: $G^{M} = (V, E, \mathbf{X}^{M})$ $a_{k,l} = \mathbf{W}_{\alpha 2}[\tanh(\mathbf{W}_{\alpha 1}\mathbf{x}_{k}^{I} + \mathbf{W}_{\alpha 0}\mathbf{f}_{l})]$ word embedding $\mathbf{F} = \{\mathbf{f}_{l}\}_{l=1}^{L}$ $\alpha_{k,l} = z_{0l}\frac{\exp(a_{k,l})}{\sum_{k=1}^{K}\exp(a_{k,l})}$ language representation \mathbf{c}_{k} at node $v_{k}: \mathbf{c}_{k} = \sum_{l=1}^{L}\alpha_{k,l}\mathbf{f}_{l}$ $\mathbf{x}_{k}^{M} = \mathbf{W}_{m}[\mathbf{x}_{k}^{I}; \mathbf{c}_{k}] + \mathbf{b}_{m}$

Language Guided Visual Reasoning Process

Model expression as a sequence of constituent expressions (soft distribution over words in the expression) $R^{(t)} = \{r_l^{(t)}\}_{l=1}^L$

$$F = \{f_l\}_{l=1}^{L} \xrightarrow{\text{bi-directional LSTM}} H = \{h_l\}_{l=1}^{L} \xrightarrow{\text{overall expression}} q$$

$$q^{(t)} = W^{(t)}q + b^{(t)} | \qquad s^{(t)} = \operatorname{relu}(W_u u^{(t)} + b_u) \\ u^{(t)} = [q^{(t)}; y^{(t-1)}] | \qquad a_l^{(t)} = W_{s2}[\operatorname{tanh}(W_{s0}s^{(t)} + W_{s1}h_l)] \qquad r_l^{(t)} = \frac{\exp(a_l^{(t)})}{\sum_{l=1}^{L} \exp(a_l^{(t)})} \qquad y^{(t)} = \sum_{l=1}^{L} r_l^{(t)}h_l$$

Step-wisely Dynamic Reasoning

The probability of the l-th word referring to each node and type of edge: $\gamma_{k,l}^{(t)} = r_l^{(t)} \alpha_{k,l}, \ \delta_{n,l}^{(t)} = r_l^{(t)} \beta_{n,l}$ The weight of each node (or the edge type) being mentioned in time step: $\lambda_k^{(t)} = \sum_{l=1}^L \gamma_{k,l}^{(t)}, \ \mu_n^{(t)} = \sum_{l=1}^L \delta_{n,l}^{(t)}$ Update the gates for every node or the edge type: $p_k^{(t)} = \lambda_k^{(t)} + p_k^{(t-1)}, \ \nu_n^{(t)} = \mu_n^{(t)} + \nu_n^{(t-1)}$

Identify the compound object corresponding to each node:

		H	RefCOC	D	R	efCOCC)+	RefC	OCOg
	feature	val	testA	testB	val	testA	testB	val	test
MMI [18]	vgg16	-	63.15	64.21		48.73	42.13	-	-
Neg Bag [19]	vgg16	76.90	75.60	78.00	10			12	68.40
CG [16]	vgg16		74.04	73.43	+	60.26	55.03		-
Attr [13]	vgg16		78.85	78.07	-	61.47	57.22		
CMN [7]	vgg16		75.94	79.57		59.29	59.34	14	-
Speaker [31]	vgg16	76.18	74.39	77.30	58.94	61.29	56.24	27	
Spearker+Listener+Reinforcer[32]	vgg16	78.36	77.97	79.86	61.33	63.10	58.19	71.32	71.72
Speaker+Listener+Reinforcer [32]	vgg16	79.56	78.95	80.22	62.26	64.60	59.62	71.65	71.92
AccumulateAttn [4]	vgg16	81.27	81.17	80.01	65.56	68.76	60.63	12	2
ParallelAttn [33]	vgg16	81.67	80.81	81.32	64.18	66.31	61.46	2.0	- 1
MAttNet [30]	vgg16	80.94	79.99	82.30	63.07	65.04	61.77	73.04	72.79
Ours DGA	vgg16	83.73	83.56	82.51	68.99	72.72	62.98	75.76	75.79
MAttNet [30]	resnet101	85.65	85.26	84.57	71.01	75.13	66.17	78,10	78.12
Ours DGA	resnet101	86.34	86.64	84.79	73.56	78.31	68.15	80.21	80.26

Comparison with state-of-the-art methods on RefCOCO, RefCOCO+ and RefCOCOg when ground-truth bounding boxes are used.

Explainable Visualization

man with backpack

"motor bike the man with a backpack is riding"

matching

Visualization Results

"a lady wearing a purple shirt with a birthday cake"

"cake"

T = 1

"gray shirt"

"purple shirt"

T = 2

T = 3

"lady"

matching

"the elephant behind the man wearing a gray shirt"

"man"

matching

chain structure

tree structure

□Introduction and Related Work

- **Cross-Modal Relationship Inference Network, CVPR 2019**
- Dynamic Graph Attention for Visual Reasoning, ICCV2019
- **Scene Graph guided Visual Reasoning, CVPR2020**
- **Conclusion and Future Work Discussion**

Scene Graph guided Modular Network

Performs structured reasoning with neural modules under the guidance of the language scene graph

Scene Graph guided Modular Network

Overview of our Scene Graph guided Modular Network (SGMN)

Scene Graph Representations

Image Semantic Graph:

 $\mathcal{G}^{o} = (\mathcal{V}^{o}, \mathcal{E}^{o}) \qquad \mathcal{V}^{o} = \{v_{i}^{o}\}_{i=1}^{N}$ $\mathcal{E}^{o} = \{e_{ij}^{o}\}_{i,j=1}^{N}$ Node: Visual feature: \mathbf{V}_{i}^{O} Spatial feature: $\mathbf{p}_i^o = [x_i, y_i, w_i, h_i, w_i h_i]$ Edge feature: $\mathbf{e}_{ij}^o = [\mathbf{W}_o^T \mathbf{l}_{ij}^o, \mathbf{v}_i^o]$ $\mathbf{l}_{ij}^{o} = \left[\frac{x_{j} - x_{ci}}{w_{i}}, \frac{y_{j} - y_{ci}}{h_{i}}, \frac{x_{j} + w_{j} - x_{ci}}{w_{i}}, \frac{y_{j} + h_{j} - y_{ci}}{h_{i}}, \frac{w_{j}h_{j}}{w_{i}h_{i}} \right]$

Image Semantic Graph

Language Scene Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ $\mathcal{V} = \{v_m\}_{m=1}^M$ noun or noun phrase $\mathcal{E} = \{e_k\}_{k=1}^K$ $e_k = (v_{ks}, r_k, v_{ko})$ Relation r_k a preposition/verb word or phrase

 e_k indicates that subject node v_{ks} is modified by object node

Structured Reasoning

the girl in blue smock across the table

a boy who is to the left of a skater and is wearing dark t-shirt, and the skater is on a skateboard

Structured Reasoning

Structured Reasoning

Given node v_m , with its associated phrase consists of words $\{w_t\}_{t=1}^T$

Embedded feature vectors: $\{\mathbf{f}_t\}_{t=1}^T$

Bi-directional LSTM for context feature representation: \mathbf{h}_t

represent the whole phrase feature as: \mathbf{h}

An individual entity is often described by its appearance and spatial location. We learn feature representations for node v_m from both appearance and spatial location:

Intermediate node operation

Intermediate node v_m is connected to nodes that modify it, denote the connected edge subset as: $\mathcal{E}_m \in \mathcal{E}$ For each edge $e_k = (v_{ks}, r_k, v_{ko})$, form an associated sentence by concatenating the words or phrases Obtain embedded feature vectors: $\{\mathbf{f}_t\}_{t=1}^T$, Bi-directional LSTM for context feature representation: \mathbf{h}_t Compute the attention map for node v_{ks} from both subject description and relation-based transfer For subject description, compute as Leaf Operation and obtain: $\{\lambda_{n,k_s}^{look}\}_{n=1}^N$ and $\{\lambda_{n,k_s}^{loc}\}_{n=1}^N$) For relation-based transfer, relational feature representation $\alpha_{t,k}^{rel} = \frac{\exp(\mathbf{W}_{rel}^T \mathbf{h}_t)}{\sum_{t=1}^T \exp(\mathbf{W}_{t,k}^T \mathbf{h}_t)}, \mathbf{r}_k = \sum_{t=1}^T \alpha_{t,k}^{rel} \mathbf{f}_t$ $\rightarrow \{\gamma_{ij,k}\}_{i,j=1}^N$ AttendRelation \mathbf{r}_k $\{\lambda_{n.k.}^{rel}\}_{n=1}^N$ Norm Transfer $\beta_k^{rel} = \text{sigmoid}(\mathbf{W}_2^T \mathbf{h} + b_2)$ $\lambda_{n,k_s} = \beta_{k_s}^{look} \lambda_{n,k_s}^{look} + \beta_{k_s}^{loc} \lambda_{n,k_s}^{loc} + \beta_{n,k_s}^{rel} \lambda_{n,k_s}^{rel} \left\{ \{\lambda_{n,k_s}\}_{n=1}^N \right\} \longrightarrow \text{Merge} \longrightarrow$ Norm $\{\lambda_{n,k_s}\}_{n=1}^{N} = \text{Norm}(\{\lambda_{n,k_s}\}_{n=1}^{N})$

Neural Modules

AttendNode [appearance query, location query]:

$$\lambda_n^{look} = \langle \text{L2Norm}(\text{MLP}_0(\mathbf{v}_n^o)), \text{L2Norm}(\text{MLP}_1(\mathbf{v}^{look})) \rangle$$
$$\lambda_n^{loc} = \langle \text{L2Norm}(\text{MLP}_2(\mathbf{p}_n^o)), \text{L2Norm}(\text{MLP}_3(\mathbf{v}^{loc})) \rangle$$

AttendRelation [relation query]:

$$\gamma_{ij} = \sigma(\langle \text{L2Norm}(\text{MLP}_5(\mathbf{e}_{ij}^o)), \text{L2Norm}(\text{MLP}_1(\mathbf{e}))\rangle$$

Transfer: $\lambda_n^{new} = \sum_{j=1}^N \gamma_{n,j}\lambda_j$ Merge: $\lambda_n = \sum_{\{\lambda'_n\}_{n=1}^N \in \Lambda} \lambda'_n$

Norm: Rescale attention maps to [-1, 1].

The final attention map for the referent node is obtained: $\{\lambda_{n,ref}\}_{n=1}^N$

Adopt the cross-entropy loss for training: $p_i = \exp(\lambda_{i,ref}) / \sum_{n=1}^{N} \exp(\lambda_{n,ref}), \text{loss} = -\log(p_{gt})$

 p_{gt} is the probability of the ground-truth object

During inference, choose the object with the highest probability.

Motivation:

- Dataset biases exist
- □ Samples in existing datasets have unbalanced levels of difficulty
- Evaluation is only conducted on final predictions but not on intermediate reasoning process

Ref-Reasoning Dataset:

- Built on the scenes from the GQA dataset.
- Generate referring expressions according to the ground-truth image scene graphs.
- Design a family of referring expression templates for each reasoning layout.
- During expression generation: (the referent node + a sub-graph + a template), check uniqueness.
- Define the difficulty level as the shortest sub-expression which can identify the referent in the scene graph.

Dataset	Specification
RefCOCO	 142,210 expression referent pairs in 19,994 images Average length of expression < 4
RefCOCO+	 141,564 expression-referent pairs in 19,992 images Forbids describing the absolute locations Average length of expression < 4
RefCOCOg	 95,010 expression-referent pairs from 25,799 images Average length of expression 8.43
Ref-Reasoning	 > 810,012 referring expressions in 195,288 images > Semantically rich expressions describing objects, attributes, direct relations and indirect relations with different layouts

Comparison with baselines and state-of-the-art methods on Ref-Reasoning dataset

		Number	Sp	Split		
	one	two	three	>= four	val	test
CNN	10.57	13.11	14.21	11.32	12.36	12.15
CNN+LSTM	75.29	51.85	46.26	32.45	42.38	42.43
DGA	73.14	54.63	48.48	37.63	45.37	45.87
CMRIN	79.20	56.87	50.07	35.29	45.43	45.87
Ours SGMN	79.71	61.77	55.57	41.89	51.04	51.39

□ The CNN model 12.15%, much lower than 41.1%^[4] for the Ref-COCOg dataset.
 □ CNN+LSTM 75.29% on one-node split (Not require reasoning).

□ DGA and CMRIN achieve higher performance on the two-, three and four-node splits because they learn a language-guided contextual representation.

Comparison with state-of-the-art methods on RefCOCO, RefCOCO+ and RefCOCOg

	RefCOCO		RefCO	CO+	RefCOCOg
	testA	testB	testA	testB	test
Holistic Models					
CMN [9]	75.94	79.57	59.29	59.34	-
ParallelAttn [29]	80.81	81.32	66.31	61.46	-
MAttNet* [26]	85.26	84.57	75.13	66.17	78.12
CMRIN* [23]	87.63	84.73	80.93	68.99	80.66
DGA* [24]	86.64	84.79	78.31	68.15	80.26
Structured Models					
MattNet* + parser [26]	79.71	81.22	68.30	62.94	73.72
RvG-Tree* [8]	82.52	82.90	70.21	65.49	75.20
DGA* + parser [24]	84.69	83.69	74.83	65.43	76.33
NMTree* [15]	85.63	85.08	75.74	67.62	78.21
MSGL* [16]	85.45	85.12	75.31	67.50	78.46
Ours SGMN*	86.67	85.36	78.66	69.77	81.42

- SGMN consistently outperforms
 existing structured methods across
 all the datasets.
- Holistic models usually have higher performance.
- However, inference mechanism of holistic methods has poor interpretability.

		Sp	Split			
	one	two	three	>= four	val	test
w/o transfer	79.14	48.51	45.97	31.57	40.66	41.88
w/o norm	79.37	49.44	45.61	31.57	40.80	41.93
max merge	78.71	54.00	50.34	34.76	44.50	45.27
min merge	78.83	53.83	51.11	35.79	45.25	46.00
Ours SGMN	79.71	61.77	55.57	41.89	51.04	51.39

Ablation study on the design of neural modules

- □ All the models have similar performance on the split of expressions directly describing the referents (one node split).
- □ SGMN without the Transfer module and without Norm module have much lower performance.
- □ min-merge and max-merge drops because max-merge only captures the most significant relation and min-merge is sensitive to parsing errors.

SGMN can generate interpretable visual evidences of intermediate steps in the reasoning process.

SGMN can generate interpretable visual evidences of intermediate steps in the reasoning process.

□Introduction and Related Work

- **Cross-Modal Relationship Inference Network, CVPR 2019**
- Dynamic Graph Attention for Visual Reasoning, ICCV2019
- □Scene Graph guided Visual Reasoning, CVPR2020
- **Conclusion and Future Work Discussion**

Future Work Discussion

Commonsense Reasoning for Visual Grounding

The lady to the right of the waiter
 The person who ordered the dish served by the waiter

From Recognition to Cognition: Visual Commonsense Reasoning, CVPR2019

Future Work Discussion

Task Driven Object Detection

What object in the scene would a human choose to serve wine? [Sawatzky et al. CVPR2019]

I want to watch the "The Big Bang Theory" now, by the way, the room is too bright.

Thank You!

[1] Sibei Yang, Guanbin Li, Yizhou Yu, "Relationship-Embedded Representation Learning for Grounding Referring Expressions", **T-PAMI**, 2020.

- [2] Sibei Yang, Guanbin Li, Yizhou Yu, "Graph Structured Referring Expression Reasoning in The Wild", **CVPR**, **Oral Presentation**, 2020.
- [3] Sibei Yang, Guanbin Li, Yizhou Yu, "Dynamic Graph Attention for Referring Expression Comprehension", **ICCV**, **Oral Presentation**, 2019.
- [4] Sibei Yang, Guanbin Li, Yizhou Yu, "Cross-Modal Relationship Inference for Grounding Referring Expressions", **CVPR**, 2019.

Source code available at:

https://github.com/sibeiyang/sgmn