Representation Learning and Super-Resolution Generation for Scientific Visualization

Chaoli Wang University of Notre Dame

Outline of talk

- Scientific visualization
- FlowNet for representation learning
- TSR-TVD for super-resolution generation
- Improvement and expansion
- Emerging directions for AI+VIS research

Scientific visualization

Scalar fields +0.459 -0.382

Direct volume rendering and isosurface rendering

Transfer function

0

Vector fields

Streamlines and stream surfaces

- Streamlines are a family of curves that are instantaneously tangent to the velocity vector of the flow
- Show the trajectory a seed will travel in at any point in time
- Replace a seeding point with a seeding curve trace a stream surface

FlowVisual https://sites.nd.edu/chaoli-wang/flowvisual/ 7

Examples of flow lines and surfaces

FlowNet

Jun Han, Jun Tao, and Chaoli Wang. FlowNet: A Deep Learning Framework for Clustering and Selection of Streamlines and Stream Surfaces. *IEEE Transactions on Visualization and Computer Graphics*, 26(4):1732-1744, 2020.

Outline of approach

- Goal
 - A single deep learning approach for identifying representative flow lines or flow surfaces
- Key ideas
 - Leverage an autoencoder to automatically learn line or surface feature descriptors
 - Apply dimensionality reduction and interactive clustering for exploration and selection

FlowNet user interface

Video demo

FlowNet architecture

- Encoder-decoder framework
- 3D voxel-based binary representation as input
- Feature descriptor learning in the latent space

Why voxel-based approach?

- Manifold-based
 - Suitable for 3D mesh manifold (genus zero or higher genus surface)
 - Does not work for flow lines or surfaces (non-closed)
- Multiview-based
 - Represent 3D shape with images rendered from different views
 - Flow surfaces could be severely self-occluded
- Voxel-based
 - No precise line or surface is required for loss function computation and reconstruction quality evaluation
 - Currently limited to a low resolution (e.g., 1283)
 - Encode any 3D volumetric information (line, surface, volume)

FlowNet details

- The encoder consists of four convolutional (CONV) layers with batch normalization (BN) added in between, one CONV layer w/o BN, followed by two fully-connected layers
- The decoder consists of five CONV layers and four BN layers
- Apply the rectified linear unit (ReLU) at the hidden layers and the sigmoid function at the output layer
- Consider three loss functions: binary cross entropy, mean squared error (MSE), and Dice loss

Dimensionality reduction and object clustering

- Consider three dimensionality reduction methods: t-SNE (*neighborhood-preserving*), MDS and Isomap (*distance-preserving*)
- Consider three clustering methods: DBSCAN (*density-based*), k-means (*partition-based*), and agglomerative clustering (*hierarchy-based*)
- Finally choose t-SNE + DBSCAN
- Compare three distance measures: FlowNet feature Euclidean distance, streamline MCP distance, and streamline Hausdorff distance

Parameter setting and performance

	Original	Downsampled	Kernel		Training	Training	Testing	Testing
Data Set	Dimension	Dimension	Size		# Lines	F ₁ Score	# Lines	F ₁ Score
ABC	$51 \times 51 \times 51$	$51 \times 51 \times 51$	$3 \times 3 \times 3$	3	3,000	0.91	3,000	0.82
Bénard flow	$128 \times 32 \times 64$	$64 \times 16 \times 32$	$4 \times 1 \times 2$	2	3,000	0.87	3,000	0.80
car flow	$368 \times 234 \times 60$	$92 \times 59 \times 15$	$6 \times 4 \times 1$		3,000	0.81	3,000	0.69
computer room	$417 \times 345 \times 60$	$105\times87\times15$	$8 \times 6 \times 2$	2	3,000	0.74	3,000	0.68
crayfish	$322 \times 162 \times 119$	$81 \times 40 \times 30$	$4 \times 2 \times 2$	2	3,000	0.86	3,000	0.78
five critical pts	$51 \times 51 \times 51$	$51 \times 51 \times 51$	$3 \times 3 \times 3$	3	3,000	0.96	3,000	0.72
solar plume	$126\times126\times512$	$32 \times 32 \times 128$	$2 \times 2 \times 8$	3	4,000	0.83	4,000	0.76
square cylinder	$192 \times 64 \times 48$	$96 \times 32 \times 24$	$8 \times 3 \times 2$	2	3,000	0.84	3,000	0.72
supernova	$100 \times 100 \times 100$	$50 \times 50 \times 50$	$2 \times 2 \times 2$	2	3,000	0.86	3,000	0.75
tornado	$64 \times 64 \times 64$	$50 \times 50 \times 50$	$3 \times 3 \times 3$	3	3,000	0.91	3,000	0.76
two swirls	$64 \times 64 \times 64$	$32 \times 32 \times 32$	$4 \times 4 \times 4$	Ł	3,000	0.88	3,000	0.75
	0 ' ' 1	D 1 1	IZ 1					77. J.
Dici	Original	Downsampled	Kernel	Tr	aining	Training	Testing	Testing
Data Set	Original Dimension	Downsampled Dimension	Kernel Size	Tr #	aining Surfaces	Training F ₁ Score	Testing # Surfaces	Testing F ₁ Score
Data Set ABC	Original Dimension $51 \times 51 \times 51$	Downsampled Dimension $51 \times 51 \times 51$	Kernel Size $3 \times 3 \times 3$	Tr # 1 2,0	aining Surfaces 000	Training F ₁ Score 0.84	Testing # Surfaces 2,000	Testing F ₁ Score 0.71
Data Set ABC Bénard flow	Original Dimension $51 \times 51 \times 51$ $128 \times 32 \times 64$	Downsampled Dimension $51 \times 51 \times 51$ $64 \times 16 \times 32$	KernelSize $3 \times 3 \times 3$ $4 \times 1 \times 2$	Tr # 2,0 2,0	aining Surfaces 000 000	Training F ₁ Score 0.84 0.84	Testing # Surfaces 2,000 2,000	Testing F ₁ Score 0.71 0.79
Data Set ABC Bénard flow car flow	$\begin{array}{c} \text{Original} \\ \text{Dimension} \\ 51 \times 51 \times 51 \\ 128 \times 32 \times 64 \\ 368 \times 234 \times 60 \end{array}$	Downsampled Dimension $51 \times 51 \times 51$ $64 \times 16 \times 32$ $92 \times 59 \times 15$	Kernel Size $3 \times 3 \times 3$ $4 \times 1 \times 2$ $6 \times 4 \times 1$	Tr # 2,0 2,0	aining Surfaces 000 000	Training F ₁ Score 0.84 0.84	Testing # Surfaces 2,000 2,000	Testing F ₁ Score 0.71 0.79
Data Set ABC Bénard flow car flow computer room	$\begin{array}{c} \text{Original} \\ \text{Dimension} \\ 51 \times 51 \times 51 \\ 128 \times 32 \times 64 \\ 368 \times 234 \times 60 \\ 417 \times 345 \times 60 \end{array}$	Downsampled Dimension $51 \times 51 \times 51$ $64 \times 16 \times 32$ $92 \times 59 \times 15$ $105 \times 87 \times 15$	KernelSize $3 \times 3 \times 3$ $4 \times 1 \times 2$ $6 \times 4 \times 1$ $8 \times 6 \times 2$	Tr # 2,0 2,0 2,0	aining Surfaces 000 000 000	Training F ₁ Score 0.84 0.84 0.83	Testing # Surfaces 2,000 2,000 2,000	Testing F ₁ Score 0.71 0.79 0.59
Data Set ABC Bénard flow car flow computer room crayfish	$\begin{array}{c} \text{Original} \\ \text{Dimension} \\ 51 \times 51 \times 51 \\ 128 \times 32 \times 64 \\ 368 \times 234 \times 60 \\ 417 \times 345 \times 60 \\ 322 \times 162 \times 119 \end{array}$	Downsampled Dimension $51 \times 51 \times 51$ $64 \times 16 \times 32$ $92 \times 59 \times 15$ $105 \times 87 \times 15$ $81 \times 40 \times 30$	Kernel Size $3 \times 3 \times 3$ $4 \times 1 \times 2$ $6 \times 4 \times 1$ $8 \times 6 \times 2$ $4 \times 2 \times 2$	Tr # 2,0 2,0 2,0	aining Surfaces 000 000 000	Training F ₁ Score 0.84 0.84 0.83	Testing # Surfaces 2,000 2,000 2,000	Testing F ₁ Score 0.71 0.79 0.59
Data Set ABC Bénard flow car flow computer room crayfish five critical pts	$\begin{array}{c} \text{Original} \\ \text{Dimension} \\ 51 \times 51 \times 51 \\ 128 \times 32 \times 64 \\ 368 \times 234 \times 60 \\ 417 \times 345 \times 60 \\ 322 \times 162 \times 119 \\ 51 \times 51 \times 51 \end{array}$	$\begin{array}{c} \text{Downsampled} \\ \text{Dimension} \\ 51 \times 51 \times 51 \\ 64 \times 16 \times 32 \\ 92 \times 59 \times 15 \\ 105 \times 87 \times 15 \\ 81 \times 40 \times 30 \\ 51 \times 51 \times 51 \end{array}$	Kernel Size $3 \times 3 \times 3$ $4 \times 1 \times 2$ $6 \times 4 \times 1$ $8 \times 6 \times 2$ $4 \times 2 \times 2$ $3 \times 3 \times 3$	Tr # 2,0 2,0 2,0 2,0	aining Surfaces 000 000 000 000	Training F ₁ Score 0.84 0.84 0.83 0.72	Testing # Surfaces 2,000 2,000 2,000 2,000	Testing F_1 Score 0.71 0.79 0.59 0.57
Data Set ABC Bénard flow car flow computer room crayfish five critical pts solar plume	$\begin{array}{c} \text{Original} \\ \text{Dimension} \\ 51 \times 51 \times 51 \\ 128 \times 32 \times 64 \\ 368 \times 234 \times 60 \\ 417 \times 345 \times 60 \\ 322 \times 162 \times 119 \\ 51 \times 51 \times 51 \\ 126 \times 126 \times 512 \end{array}$	Downsampled Dimension $51 \times 51 \times 51$ $64 \times 16 \times 32$ $92 \times 59 \times 15$ $105 \times 87 \times 15$ $81 \times 40 \times 30$ $51 \times 51 \times 51$ $32 \times 32 \times 128$	Kernel Size $3 \times 3 \times 3$ $4 \times 1 \times 2$ $6 \times 4 \times 1$ $8 \times 6 \times 2$ $4 \times 2 \times 2$ $3 \times 3 \times 3$ $2 \times 2 \times 8$	Tr # 2,0 2,0 2,0 2,0 2,0 1,0	aining Surfaces 000 000 000 000 000	Training F ₁ Score 0.84 0.84 0.83 0.72 0.84	Testing # Surfaces 2,000 2,000 2,000 2,000 1,000	Testing F_1 Score 0.71 0.79 0.59 0.57 0.57
Data Set ABC Bénard flow car flow computer room crayfish five critical pts solar plume square cylinder	$\begin{array}{c} \text{Original} \\ \text{Dimension} \\ 51 \times 51 \times 51 \\ 128 \times 32 \times 64 \\ 368 \times 234 \times 60 \\ 417 \times 345 \times 60 \\ 322 \times 162 \times 119 \\ 51 \times 51 \times 51 \\ 126 \times 126 \times 512 \\ 192 \times 64 \times 48 \end{array}$	Downsampled Dimension $51 \times 51 \times 51$ $64 \times 16 \times 32$ $92 \times 59 \times 15$ $105 \times 87 \times 15$ $81 \times 40 \times 30$ $51 \times 51 \times 51$ $32 \times 32 \times 128$ $96 \times 32 \times 24$	Kernel Size $3 \times 3 \times 3$ $4 \times 1 \times 2$ $6 \times 4 \times 1$ $8 \times 6 \times 2$ $4 \times 2 \times 2$ $3 \times 3 \times 3$ $2 \times 2 \times 8$ $8 \times 3 \times 2$	Tr # 2, 2, 2, 2, 1, 2,	aining Surfaces 000 000 000 000 000 000	Training F ₁ Score 0.84 0.84 0.83 0.72 0.84 0.91	Testing # Surfaces 2,000 2,000 2,000 2,000 1,000 2,000	Testing F ₁ Score 0.71 0.79 0.59 0.57 0.57 0.86
Data Set ABC Bénard flow car flow computer room crayfish five critical pts solar plume square cylinder supernova	$\begin{array}{c} \text{Original} \\ \text{Dimension} \\ 51 \times 51 \times 51 \\ 128 \times 32 \times 64 \\ 368 \times 234 \times 60 \\ 417 \times 345 \times 60 \\ 322 \times 162 \times 119 \\ 51 \times 51 \times 51 \\ 126 \times 126 \times 512 \\ 192 \times 64 \times 48 \\ 100 \times 100 \times 100 \end{array}$	Downsampled Dimension $51 \times 51 \times 51$ $64 \times 16 \times 32$ $92 \times 59 \times 15$ $105 \times 87 \times 15$ $81 \times 40 \times 30$ $51 \times 51 \times 51$ $32 \times 32 \times 128$ $96 \times 32 \times 24$ $50 \times 50 \times 50$	Kernel Size $3 \times 3 \times 3$ $4 \times 1 \times 2$ $6 \times 4 \times 1$ $8 \times 6 \times 2$ $4 \times 2 \times 2$ $3 \times 3 \times 3$ $2 \times 2 \times 8$ $8 \times 3 \times 2$ $2 \times 2 \times 2$	Tr # 2,0 2,0 2,0 2,0 1,0 2,0	aining Surfaces 000 000 000 000 000 000	Training F ₁ Score 0.84 0.84 0.83 0.72 0.84 0.91	Testing # Surfaces 2,000 2,000 2,000 2,000 1,000 2,000	Testing F ₁ Score 0.71 0.79 0.59 0.57 0.57 0.86
Data Set ABC Bénard flow car flow computer room crayfish five critical pts solar plume square cylinder supernova tornado	$\begin{array}{c} \text{Original} \\ \text{Dimension} \\ 51 \times 51 \times 51 \\ 128 \times 32 \times 64 \\ 368 \times 234 \times 60 \\ 417 \times 345 \times 60 \\ 322 \times 162 \times 119 \\ 51 \times 51 \times 51 \\ 126 \times 126 \times 512 \\ 192 \times 64 \times 48 \\ 100 \times 100 \times 100 \\ 64 \times 64 \times 64 \end{array}$	Downsampled Dimension $51 \times 51 \times 51$ $64 \times 16 \times 32$ $92 \times 59 \times 15$ $105 \times 87 \times 15$ $81 \times 40 \times 30$ $51 \times 51 \times 51$ $32 \times 32 \times 128$ $96 \times 32 \times 24$ $50 \times 50 \times 50$ $50 \times 50 \times 50$	Kernel Size $3 \times 3 \times 3$ $4 \times 1 \times 2$ $6 \times 4 \times 1$ $8 \times 6 \times 2$ $4 \times 2 \times 2$ $3 \times 3 \times 3$ $2 \times 2 \times 8$ $8 \times 3 \times 2$ $2 \times 2 \times 2$ $3 \times 3 \times 3$	Tr # 2, 2, 2, 1, 2, 1, 2, 2,	aining Surfaces 000 000 000 000 000 000 000	Training F ₁ Score 0.84 0.83 0.72 0.84 0.91 0.88	Testing # Surfaces 2,000 2,000 2,000 2,000 1,000 2,000 2,000	Testing F_1 Score 0.71 0.79 0.59 0.57 0.57 0.86 0.78

Qualitative evaluation

Test set only

Training set only

Training set + test set

Quantitative evaluation

-				PSNR (db)		
Data Set	# Lines	Ours	p(s)	I(s;V)	REP	Xu's
crayfish	70	30.94	30.84	30.91	30.02	28.97
solar plume	100	30.68	30.37	30.07	30.75	15.78
five critical pts	140	26.25	21.23	21.13	25.50	20.16
tornado	60	29.74	28.12	29.44	29.13	28.30
two swirls	80	36.35	36.30	34.55	36.21	27.72
				AAD		
Data Set	# Lines	Ours	p(s)	I(s;V)	REP	Xu's
crayfish	70	0.102	0.105	0.103	0.116	0.144
solar plume	100	0.283	0.309	0.286	0.280	0.303
five critical pts	140	0.023	0.031	0.036	0.026	0.031
tornado	60	0.080	0.167	0.116	0.105	0.101
two swirls	80	0.065	0.066	0.079	0.070	0.071

Use representative streamlines to reconstruct the vector field using gradient vector flow (GVF)

FlowNet results

FlowNet results

FlowNet results

Jun Han and Chaoli Wang. TSR-TVD: Temporal Super-Resolution for Time-Varying Data Analysis and Visualization. *IEEE Transactions on Visualization and Computer Graphics*, 26(1):205-215, 2020.

Outline of approach

- Goal
 - Generation of temporal super-resolution (TSR) of timevarying data (TVD)
- Key idea
 - Leverage a recurrent generative network, a combination of recurrent neural network (RNN) and generative adversarial network (GAN) to generate temporal high-resolution volume sequences

TSR-TVD architecture

Generator and discriminator

- Generator G consists of the predicting and blending modules
 - Predicting module produces a forward prediction V^{F} through V_i and a backward prediction V^{B} through V_{i+k}
 - Blending module takes V_i , V_{i+k} , V^F , and V^B that share the same time step as input and outputs the synthesized volume
- Discriminator *D* distinguishes the synthesized volume from the ground-truth volume

Architecture details

real /

VI+K-1

VB+1

synthesized

volume

VB+k-3 VB+k-2 VB+k-1

ground-truth

VI+1

volume

VI+2

VI+3

Loss function

- Adversarial loss that trains G with the goal of fooling D
- Volumetric loss that mixes the adversarial loss with a more traditional loss, such as L_2 distance
- Feature loss that constrains *G* to produce natural statics at multiple scales

Quantitative evaluation

data set (variable) LERP RNN CNN TSR LERP RNN CNN TSR combustion (HR) 25.61 26.13 25.72 25.81 0.66 0.70 0.69 0.72 combustion (MF) 25.12 25.86 25.43 25.62 0.71 0.73 0.73 0.74 supernova (E) 22.34 24.31 23.81 23.74 0.61 0.64 0.63 0.64			PSNR	R (dB)	SS			Μ	
combustion (HR) 25.61 26.13 25.72 25.81 0.66 0.70 0.69 0.72 combustion (MF) 25.12 25.86 25.43 25.62 0.71 0.73 0.73 0.74 supernova (E) 22.34 24.31 23.81 23.74 0.61 0.64 0.63 0.64	data set (variable)	LERP	RNN	CNN	TSR	LERP	RNN	CNN	TSR
combustion (MF) 25.12 25.86 25.43 25.62 0.71 0.73 0.73 0.74 supernova (F) 22.34 24.31 23.81 23.74 0.61 0.64 0.63 0.64	combustion (HR)	25.61	26.13	25.72	25.81	0.66	0.70	0.69	0.72
Supernova (E) 22.34 24.31 23.81 23.74 0.61 0.64 0.63 0.64	combustion (MF)	25.12	25.86	25.43	25.62	0.71	0.73	0.73	0.74
Supernova(E) = 22.34 24.31 23.01 23.74 0.01 0.04 0.03 0.00	supernova (E)	22.34	24.31	23.81	23.74	0.61	0.64	0.63	0.66
vortex 26.62 27.42 26.85 26.90 0.73 0.75 0.75 0.75	vortex	26.62	27.42	26.85	26.90	0.73	0.75	0.75	0.75

Table 3. Comparison of average IS values at selected isovalues.

	LE	RP	TSR-TVD		
data set (variable)	v = 0	v = 0.176	v = 0	v = 0.176	
supernova (E)	0.56	0.24	0.71	0.68	
	v = 0.255	v = 0.569	v = 0.255	v = 0.569	
combustion (HR)	0.65	0.59	0.73	0.72	

• PNSR at data-level, SSIM at image-level, and IS at feature-level

Qualitative analysis (solar plume)

Linear interpolation

Qualitative analysis (solar plume)

RNN

TSR-TVD

Qualitative analysis (solar plume)

CNN

TSR-TVD

Linear interpolation

Ground truth

Linear interpolation

Ground truth

Linear interpolation

Ground truth

Linear interpolation

Ground truth

Linear interpolation

Ground truth

Qualitative analysis (combustion, MF \rightarrow HR)

Linear interpolation

Ground truth

Comparison of LERP and TSR-TVD of volueme rendering using the combustion data set.

Qualitative analysis (supernova, entropy, v=0.176)

Linear interpolation

Ground truth

Qualitative analysis (combustion, HR, v=0.569)

Linear interpolation

Ground truth

Comparison of LERP and TSR-TVD of isosurface rendering using the combustion (heat release) data set.

Future research directions

Representation learning for volumes

William P. Porter, Yunhao Xing, Blaise R. von Ohlen, Jun Han, and Chaoli Wang. A Deep Learning Approach to Selecting Representative Time Steps for Time-Varying Multivariate Data. In *Proceedings of IEEE VIS Conference (Short Papers)*, pages 131-135, 2019.

From voxel to graph representation

Other super-resolution works

SSR-VFD

Key concerns

- Training time
 - May take hours to a few days on a single GPU
- Synthesized details
 - Largely avoid fake details by using observation-driven instead of noise-driven GAN
- Ground truth
 - Possible to generate super-resolution w/o the presence of the original high-resolution data
- Model generalization
 - Could apply the trained model to different sequences or ensemble runs of the same or similar simulations

Emerging directions in AI+VIS

- VIS for AI
 - Interpreting or explaining the inner working of neural nets
 - Network model debugging, improvement, comparison, and selection
 - Teaching and learning deep learning concepts

Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers. *IEEE Transactions on Visualization and Computer Graphics*, 25(8):2674-2693, 2019.

- Al for VIS
 - Representation learning for clustering and selection
 - Data generation and augmentation
 - Replacing the traditional visualization pipeline
 - Simulation parameter space exploration
 - Parallel and in situ workflow optimization
 - Physics-informed deep learning

Acknowledgements

- Team members
 - Graduate students: Jun Han, Hao Zheng, Martin Imre
 - Postdoc: Jun Tao (Sun Yat-sen Univ.)
 - Undergraduate students: William Porter, Blaise von Ohlen
 - Exchange students: Yunhao Xing (Columbia), Yihong Ma (Notre Dame)
 - iSURE students: Li Guo (CMU), Shaojie Ye (UW-Madison)
- Collaborators
 - Danny Chen (Notre Dame), Jian-Xun Wang (Notre Dame), Hanqi Guo (ANL), Tom Peterka (ANL), Choong-Seock Chang (PPPL)
- Funding
 - NSF IIS-1455886, CNS-1629914, DUE-1833129, IIS-1955395
 - NVIDIA GPU Grant Program

Thank you! chaoli.wang@nd.edu

