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Outline of talk
• Scientific visualization
• FlowNet for representation learning
• TSR-TVD for super-resolution generation
• Improvement and expansion
• Emerging directions for AI+VIS research
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Scientific visualization
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Scalar fields
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Direct volume rendering and 
isosurface rendering

Transfer function
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Vector fields
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Streamlines and stream surfaces
! Streamlines are a family of curves that are instantaneously tangent to 

the velocity vector of the flow

! Show the trajectory a seed will travel in at any point in time

! Replace a seeding point with a seeding curve trace a stream surface

FlowVisual https://sites.nd.edu/chaoli-wang/flowvisual/ 7



Examples of flow lines and surfaces
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FlowNet

Jun Han, Jun Tao, and Chaoli Wang. FlowNet: A Deep Learning Framework for Clustering and Selection of 
Streamlines and Stream Surfaces. IEEE Transactions on Visualization and Computer Graphics, 26(4):1732-
1744, 2020.
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Outline of approach
• Goal
– A single deep learning approach for identifying 

representative flow lines or flow surfaces 
• Key ideas
– Leverage an autoencoder to automatically learn line 

or surface feature descriptors
– Apply dimensionality reduction and interactive 

clustering for exploration and selection
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FlowNet user interface
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Video demo
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! Encoder-decoder framework 
! 3D voxel-based binary representation as input
! Feature descriptor learning in the latent space

FlowNet architecture
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! Manifold-based
" Suitable for 3D mesh manifold (genus zero or higher genus surface)
" Does not work for flow lines or surfaces (non-closed)

! Multiview-based
" Represent 3D shape with images rendered from different views
" Flow surfaces could be severely self-occluded

! Voxel-based
" No precise line or surface is required for loss function computation and 

reconstruction quality evaluation
" Currently limited to a low resolution (e.g., 1283)
" Encode any 3D volumetric information (line, surface, volume)
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Why voxel-based 
approach?



FlowNet details

! The encoder consists of four convolutional (CONV) 
layers with batch normalization (BN) added in between, 
one CONV layer w/o BN, followed by two fully-connected 
layers

! The decoder consists of five CONV layers and four BN 
layers

! Apply the rectified linear unit (ReLU) at the hidden layers 
and the sigmoid function at the output layer

! Consider three loss functions: binary cross entropy, 
mean squared error (MSE), and Dice loss
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Dimensionality reduction and 
object clustering

• Consider three dimensionality reduction methods: t-SNE 
(neighborhood-preserving), MDS and Isomap (distance-
preserving)

• Consider three clustering methods: DBSCAN (density-
based), k-means (partition-based), and agglomerative 
clustering (hierarchy-based)

• Finally choose t-SNE + DBSCAN
• Compare three distance measures: FlowNet feature 

Euclidean distance, streamline MCP distance, and 
streamline Hausdorff distance
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Parameter setting and performance
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Qualitative evaluation

Training set only Test set only Training set + test set
19



Quantitative evaluation

! Use representative streamlines to reconstruct the vector field using 
gradient vector flow (GVF) 20



FlowNet
results
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FlowNet
results
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FlowNet results
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TSR-TVD

Jun Han and Chaoli Wang. TSR-TVD: Temporal Super-Resolution for Time-Varying Data Analysis and 
Visualization. IEEE Transactions on Visualization and Computer Graphics, 26(1):205-215, 2020.

Interpolation

Vm

Vm+s

Vm+1 Vm+i Vm+s-1... ...

Training Testing

V1 Vm Vm+s Vn...... ...
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Outline of approach
• Goal
–Generation of temporal super-resolution (TSR) of time-

varying data (TVD) 
• Key idea
– Leverage a recurrent generative network, a 

combination of recurrent neural network (RNN) and 
generative adversarial network (GAN) to generate 
temporal high-resolution volume sequences
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TSR-TVD architecture
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Generator and 
discriminator

! Generator G consists of the predicting and blending
modules
" Predicting module produces a forward prediction VF through Vi

and a backward prediction VB through Vi+k

" Blending module takes Vi, Vi+k, VF, and VB that share the same 
time step as input and outputs the synthesized volume

! Discriminator D distinguishes the synthesized volume 
from the ground-truth volume
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Architecture details

Predicting module 
in G

Network 
architecture of D

Residual blockSkip 
connection
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Loss function
• Adversarial loss that trains G with the goal of 

fooling D
• Volumetric loss that mixes the adversarial loss 

with a more traditional loss, such as L2 distance
• Feature loss that constrains G to produce 

natural statics at multiple scales
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Quantitative evaluation

! PNSR at data-level, SSIM at image-level, and IS at feature-level
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Qualitative analysis (solar plume)

Linear interpolation TSR-TVD
31



Qualitative analysis (solar plume)

RNN TSR-TVD
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Qualitative analysis (solar plume)

CNN TSR-TVD
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Qualitative analysis (combustion, MF)

Linear interpolation Ground truth TSR-TVD
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Qualitative analysis (combustion, MF)

Linear interpolation Ground truth TSR-TVD
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Qualitative analysis (combustion, MF)

Linear interpolation Ground truth TSR-TVD
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Qualitative analysis (combustion, MF)

Linear interpolation Ground truth TSR-TVD
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Qualitative analysis (combustion, MF)

Linear interpolation Ground truth TSR-TVD
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Qualitative analysis
(combustion, MF!HR)

Linear interpolation Ground truth TSR-TVD
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Qualitative analysis
(supernova, entropy, v=0.176)

Linear interpolation Ground truth TSR-TVD
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Qualitative analysis
(combustion, HR, v=0.569)

Linear interpolation Ground truth TSR-TVD
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Future research directions

44



Representation learning for volumes

45

William P. Porter, Yunhao Xing, Blaise R. von Ohlen, Jun Han, and Chaoli Wang. A Deep Learning Approach to 
Selecting Representative Time Steps for Time-Varying Multivariate Data. In Proceedings of IEEE VIS Conference 
(Short Papers), pages 131-135, 2019.



From voxel to graph representation

FlowNet

SurfNet
46



Other super-resolution works

SSR-TVD V2VSSR

SSR-VFD TSR-VFD 47



• Training time
– May take hours to a few days on a single GPU

• Synthesized details
– Largely avoid fake details by using observation-driven instead of 

noise-driven GAN

• Ground truth
– Possible to generate super-resolution w/o the presence of the 

original high-resolution data

• Model generalization
– Could apply the trained model to different sequences or ensemble 

runs of the same or similar simulations

Key concerns
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• VIS for AI
– Interpreting or explaining the inner working of neural nets
– Network model debugging, improvement, comparison, and selection
– Teaching and learning deep learning concepts

• AI for VIS
– Representation learning for clustering and selection
– Data generation and augmentation
– Replacing the traditional visualization pipeline
– Simulation parameter space exploration
– Parallel and in situ workflow optimization
– Physics-informed deep learning

Emerging directions in AI+VIS

Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. Visual Analytics in Deep Learning: An 
Interrogative Survey for the Next Frontiers. IEEE Transactions on Visualization and Computer Graphics, 
25(8):2674-2693, 2019.
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