TopoAct: Visually Exploring the Shape of Activations in Deep Learning Topological Data Analysis + Machine Learning

Archit Rathore, Nithin Chalapathi, Sourabh Palande Bei Wang*

*University of Utah
www.sci.utah.edu/~beiwang
beiwang@sci.utah.edu

https://arxiv.org/abs/1912.06332

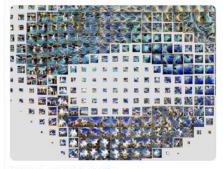
Demo: https://github.com/architrathore/TopoAct-v2.1/ Source code: https://architrathore.github.io/TopoAct-v2.1/

The first two authors contribute equally to the work.

July 2, 2020

Acknowledgment

- This project started with a twitter message by Chris Olah shared by Jeff Phillips.
- NSF DBI-1661375, NSF IIS-1513616, NSF IIS-1910733


Let us start with Twitter...

If you look closely at activation atlases, you sometimes see loops. For example:

Underwater \rightarrow surface of water \rightarrow fountain \rightarrow cloudy sky \rightarrow sky \rightarrow underwater ??

distill.pub/2019/activatio...

Chris Olah @ch402 - Mar 7, 2019

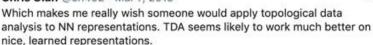
One could argue for these loops being genuine topological features of the underlying imageNet data, since neural nets are a continuous map and t-sne/umap try to preserve neighborhood structure.

(Counter argument: be cautious to draw conclusions from t-sne/umap layouts!)

0 2

13.4

C 1


....

Let us start with Twitter...

TDA + NN Representations?

Chris Olah @ch402 · Mar 7, 2019

You could use feature vis to pull structures you find back into image space.

0 7

17 3

0 4

Interpretability: a main challenge in deep learning

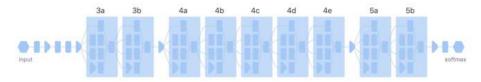
What representations have these neural networks learned that could be made human interpretable?

- Given a trained NN, we probe neuron activations (combinations of neuron firings) in response to a particular input image.
- With millions of input images, we would like to obtain a global view of what the neurons have learned by studying neuron activations at a particular layer, and across multiple layers of the network.

Topology of neuron activations

- What is the shape of the space of activations?
- What is the organizational principle behind neuron activations?
- How are the activations related within a layer and across layers?

Ingredients:


- Neuron activation vectors as point clouds
- Mapper graphs as summary graphs
- Feature visualization
- Interactive and exploratory visual analytics

Take home message for TopoAct

- Capture topological structures (branching and loop structures) in the space of activations that are hard to detect via DR
- Offer new perspectives on how a NN "sees" the input images.

GoogLeNet (InceptionV1)

Trained on ImageNet ILSVRC.

Image: https://distill.pub/2019/activation-atlas/

What is neuron activation?

Fix a pre-trained model, a particular layer of interest, an input image:

- We feed an input image to the network and collect the activations (the numerical values of how much each neuron has fired with respect to the input). The activation of a neuron is a non-linear transformation (i.e., a function) of its input.
- A single neuron produces a collection of activations from a number of overlapping patches of an input image.
- We randomly sample a single activation from these patches.

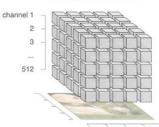
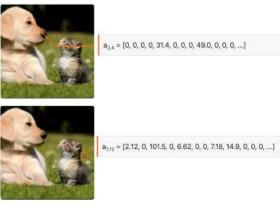
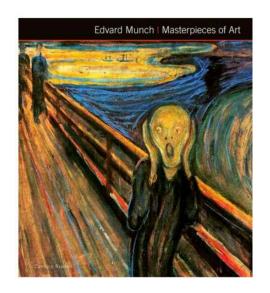


Image: https://distill.pub/2018/building-blocks/

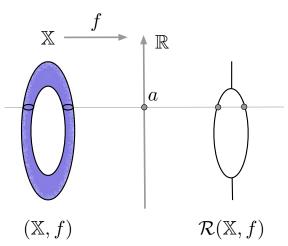
What is neuron activation?

Fix a pre-trained model, a particular layer of interest, an input image:

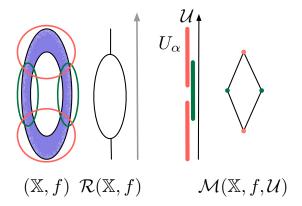



Image: https://distill.pub/2018/building-blocks/

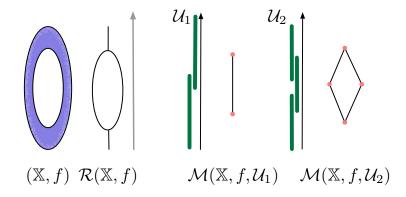
TDA of activation vectors for InceptionV1


- Suppose an input image has 14×14 patches.
- ullet A neuron within layer 4c outputs 14×14 activations per image.
- ullet Randomly sample a single activation from the 14×14 patches.
- Each activation vector is high-dimensional; its dimension depends on the number of neurons in that layer.
- Layers 3a, 3b, and 4a have 256, 480, and 512 neurons respectively, producing point clouds in 256, 480, and 512 dimensions.
- $300,000 \text{ images} \rightarrow 300,000 \text{ activation vectors for a given layer.}$
- We then apply the mapper framework to obtain topological summary graphs of these point clouds.

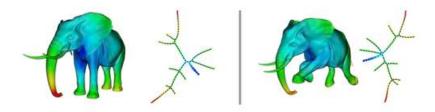
Here comes the math...


A tale of two topological constructs: Reeb graph

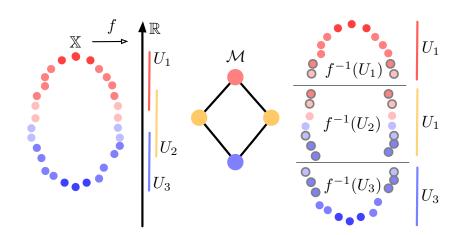
Reeb graph $\mathcal{R}(\mathbb{X},f)$ encodes the connected components of the level sets $f^{-1}(a)$ for a ranging over \mathbb{R} .


A tale of two topological constructs: mapper graph

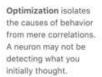
Given a finite good cover $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in A}$ of $f(\mathbb{X})$, let $f^*(\mathcal{U})$ denote the cover of \mathbb{X} obtained by considering the path-connected components of $f^{-1}(U_{\alpha})$ for each α . The mapper construction of (\mathbb{X}, f) is defined to be the nerve of $f^*(\mathcal{U})$, denoted as $\mathcal{M}(\mathbb{X}, f, \mathcal{U})$


 \mathbb{X} : a manifold or a point cloud sample

Mapper graphs at different resolution


Mapper in TDA

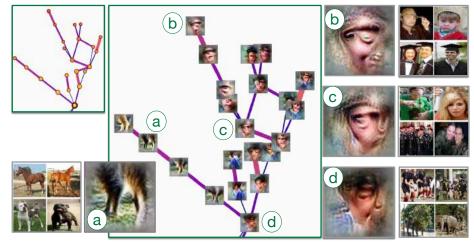
The mapper construction is widely appreciated by the practitioners...


Singh et al. (2007)

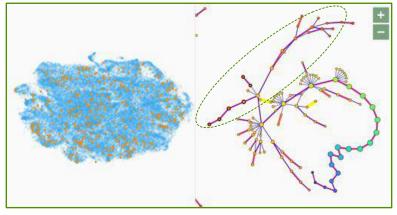
Mapper graphs as summary graphs for point cloud data

Feature visualization by optimization

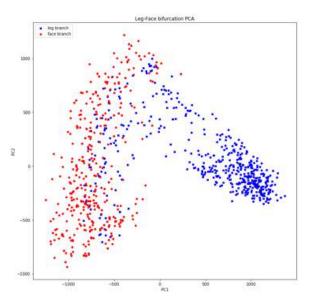
Dataset Examples show us what neurons respond to in practice


Animal faces—or snouts? mixed4a, Unit 240

Clouds—or fluffiness? mixed4a, Unit 453


Image: https://distill.pub/2017/feature-visualization/

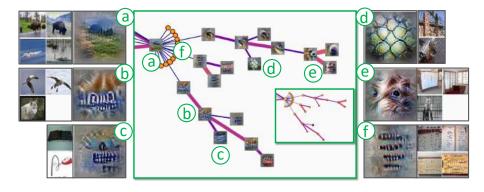
Results: leg-face bifurcation (branching)


overlap-30-eps-4c

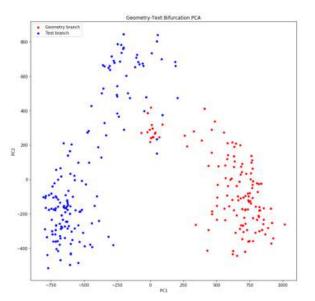
Comparison with t-SNE


Highlighting activation vectors that belong to the leg-face bifurcation as orange points in the t-SNE projection.

PCA of the leg-face bifurcation

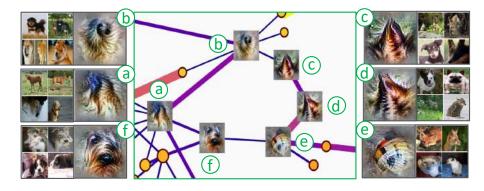

Refined analysis (and validation) of bifurcations

Results: bird-mammal bifurcation

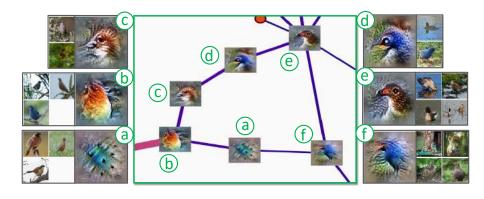


overlap-30-5a

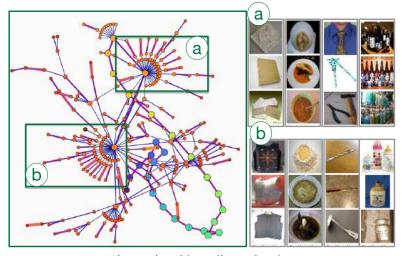
Results: geometry-text bifurcation



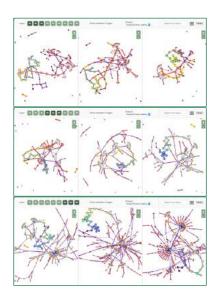
PCA of the geometry-text bifurcation



Refined analysis (and validation) of bifurcations


Results: fur-nose-ear-eye loop

Results: face-body-leg loop of birds



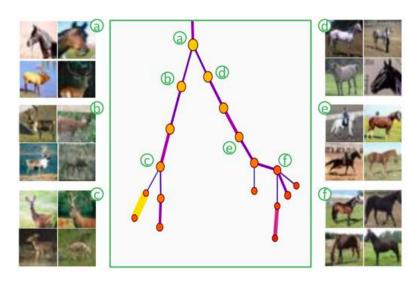
Results: distribution of branching structures

5b-overlap-30-epsilon-adaptive

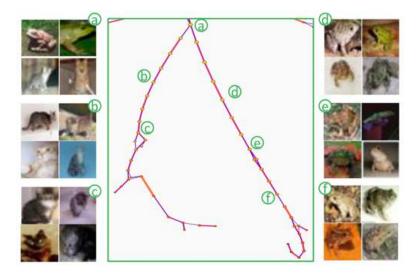
Results: multilayer summary graphs

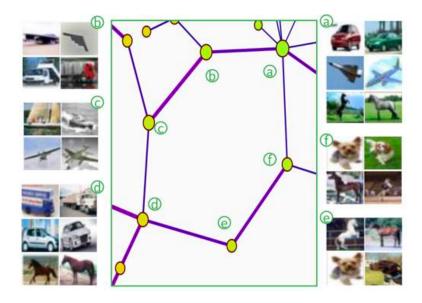
Code and Demo

```
https://github.com/architrathore/TopoAct-v2.1/
https://architrathore.github.io/TopoAct-v2.1/
```


Discussions

- Generality: other architecture, other datasets
- Parameter tuning
- Scalability
- Stability
- \bullet L_2 Norm and Adaptive Cover


Applying TopoAct to ResNet trained on CIFAR


Results CIFAR: horse-deer bifurcation

Results CIFAR: frog-cat bifurcation

Results CIFAR: Airplane-ship-horse-dog-truck loop

Discussions

- Generality: other architecture, other datasets
- Parameter tuning
- Scalability
- Stability
- \bullet L_2 Norm and Adaptive Cover

References I

Singh, G., Mémoli, F., and Carlsson, G. (2007). Topological methods for the analysis of high dimensional data sets and 3D object recognition. In *Eurographics Symposium on Point-Based Graphics*, pages 91–100.