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Introduction - Surface representation

Explicit representation
 Polygonal mesh is a piecewise linear approximation to the 3D surface.

Implicit representation
 Signed Distance Function (SDF) , Occupancy field, etc
 The surface is represented as the zero-level isosurface of an SDF.
 Deep SDFs are usually implemented as Multi-Layer Perceptrons (MLPs) 

with Rectified Linear Units (ReLUs).
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Introduction - Isosurface extraction

Isosurface extraction (meshing, e.g., via marching cubes)
 Definition: The conversion from an implicit field to an explicit surface mesh.
 Existing methods of deep implicit mesh recovery typically take a final step of Marching Cubes (MC).

Implicit function MeshInput
Isosurface extraction

 While promising, it suffers from loss of precision learned in the MLPs, 
due to the discretization nature of Marching Cubes.

 They require lots of points sampled from 3D space, which takes time, 
and the resulting mesh is just an approximation to the underlying 
isosurface.

2D MC illustration



Motivation – connecting the properties of local linearity in two worlds

Piecewise linear property
 A polygonal mesh is a piece-wise linear approximation of object surface 
 ReLU activation function is also piece-wise linear
 Any relations between the properties of local linearity in the two worlds?
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Linear mapping basics of MLPs

Multi-Layer Perceptron (MLP)
An MLP of 𝐿𝐿 hidden layers takes an input 𝑥𝑥 ∈ ℝ𝑛𝑛0 , and computes 𝑥𝑥𝑙𝑙 = 𝑔𝑔(𝑊𝑊𝑙𝑙𝑥𝑥𝑙𝑙−1) at per layer, where 𝑔𝑔 is 

the ReLU activation. We compactly write the MLP as a mapping 𝑇𝑇𝑥𝑥 = 𝑔𝑔(𝑊𝑊𝐿𝐿 …𝑔𝑔(𝑊𝑊1𝑥𝑥)).
Neuron Functionals

Any 𝑘𝑘𝑡𝑡𝑡 neuron, 𝑘𝑘 ∈ {1, … ,𝑛𝑛𝑙𝑙}, of an 𝑙𝑙𝑡𝑡𝑡 layer of the MLP 𝑇𝑇 specifies a functional defined as

where 𝜋𝜋𝑘𝑘 denotes an operator that projects onto the 𝑘𝑘𝑡𝑡𝑡 coordinate. 
All the neurons at layer 𝑙𝑙 define a functional

Region/Cell
Hyperplanes specified by neuron functionals at layer 𝑙𝑙 from a hyperplane arrangement, which partitions 

the feature space of layer 𝑙𝑙 − 1 into multiple linear regions/cells.
Let ℛ denote the set of all linear regions/cells in ℝ𝑛𝑛0 that are possibly achieved by 𝑇𝑇.



Region-wise functionals and mappings of MLPs 

State functionals
For a 𝑘𝑘𝑡𝑡𝑡 neuron of an 𝑙𝑙𝑡𝑡𝑡 layer of an MLP 𝑇𝑇, with 𝑘𝑘 ∈ {1, … ,𝑛𝑛𝑙𝑙} and 𝑙𝑙 ∈ {1, … , 𝐿𝐿}, its state functional of 

neuron activation is defined as

which gives the state functional of layer 𝑙𝑙 as

and the state functional of MLP 𝑇𝑇 as

Since 𝑠𝑠(𝑥𝑥) is fixed for all 𝑥𝑥 that fall in the same region 𝑟𝑟 ∈ ℛ, we use 𝑠𝑠 𝑟𝑟 ∈ {0,1}𝑁𝑁 to label this region, 
where 𝑁𝑁 is the number of all hidden neurons.



Region-wise linear mappings
Given a ReLU based MLP 𝑇𝑇 of 𝐿𝐿 hidden layers, for any region/cell 𝑟𝑟 ∈ ℛ, its associated linear mapping 

𝑇𝑇𝑟𝑟 is defined as

Neuron-wise linear mappings
With above definitions, we can give a linear mapping of a 𝑘𝑘𝑡𝑡𝑡 neuron of layer 𝑙𝑙 from input space.

Region-wise functionals and mappings of MLPs 



When MLPs are trained to be SDFs

Region-wise linear mappings
Given a ReLU based MLP 𝑇𝑇 of 𝐿𝐿 hidden layers, for any region/cell 𝑟𝑟 ∈ ℛ, its associated linear mapping 

𝑇𝑇𝑟𝑟 is defined as

Functional of SDF
We stack on top of 𝑇𝑇 a regression function 𝑠𝑠:ℝ𝑛𝑛𝐿𝐿 → ℝ, giving rise to a functional of SDF as

Neuron-wise linear mappings
With above definitions, we can give a linear mapping of a 𝑘𝑘𝑡𝑡𝑡 neuron of layer 𝑙𝑙 from input space, and 

the linear mapping of output neuron.



Feasible region/cell
Let {�̃�𝑟 ∈ �ℛ} denote the subset of regions in ℛ that have intersection with the zero-level isosurface.
For any 𝑥𝑥 ∈ �̃�𝑟, it must satisfy the following system of inequalities.

Analytic cell (with zero-level isosurface)
When the region is bounded, the above inequalities essentially forms a polyhedral cell defined as

Analytic face
We define the polygonal face that is an intersection of analytic cell �̃�𝑟 and surface    .

When MLPs are trained to be SDFs



A theorem that guarantees analytic cells/faces connect to form a closed mesh

 We have the following theorem that characterizes the (mild) conditions under which analytic cells and 
faces are guaranteed to connect and form a closed, piecewise planar surface.

 Remarks
The conditions assumed are practically reasonable up to a numerical precision of the learned network 

weights in the SDF                   .
Proof of the theorem also suggests an algorithm to identify the polygonal faces of a surface mesh 

learned by    , which is to be presented shortly.

Theorem 1. Assume that the zero-level isosurface    of a SDF                    defines a closed, piecewise planar 
surface. If for any region/cell                 , its associated linear mapping      and the induced plane                   are 
uniquely defined, i.e.                   and                     for any region pair of 𝑟𝑟 and 𝑟𝑟′, where     is an arbitrary scaling 
factor, then analytic faces          connect and exactly form the surface    .



An algorithm of Analytic Marching

Overview
Given a learned SDF 𝐹𝐹 = 𝑠𝑠 ∘ 𝑇𝑇 whose zero-level isosurface defines a closed, piecewise planar surface, a 

theorem proved by us suggests that obtaining the mesh concerns with identification of analytic faces 𝒫𝒫𝐹𝐹�̃�𝑟 in 
analytic cell {𝒞𝒞𝐹𝐹�̃�𝑟|�̃�𝑟 ∈ �ℛ}. To this end, we propose an algorithm of Analytic Marching that marches among 
analytic cells {𝒞𝒞𝐹𝐹�̃�𝑟|�̃�𝑟 ∈ �ℛ} to identify vertices and edges of the polygonal faces {𝒫𝒫𝐹𝐹�̃�𝑟|�̃�𝑟 ∈ �ℛ}.

① Randomly initialize one point in 3D space
② Move the point to the surface via simple gradient descent 
③ Identify one analytic face via solving 3x3 systems of linear inequalities 
④ March to the next, neighboring analytic cell via transition of neuron state
⑤ Repeat the above until an end condition of no analytic cells identified 



Analytic Marching – algorithmic details

The steps of Analytic Marching are as follows:
1. Identify at least one point             .

Given the parametric model 𝐹𝐹 and an arbitrarily initialized point 𝑥𝑥 ∈ ℝ3, this can be simply achieved by 
solving the following problem with stochastic gradient descent (SGD).

2. Compute state vector 𝑠𝑠 𝑥𝑥 , and initialize an active set and an inactive set , push 𝑠𝑠(𝑥𝑥) into    .
3. Take an active state 𝑠𝑠𝑖𝑖 from     , which specifies its analytic cell 𝒞𝒞𝐹𝐹

�𝑟𝑟𝑖𝑖 and analytic face 𝒫𝒫𝐹𝐹
�𝑟𝑟𝑖𝑖.

4. Enumerate all the vertices of  the analytic face defined by

Note that it can be done simply by brute-force vertices enumeration.
Record all the boundary planes {�𝐻𝐻𝑙𝑙𝑘𝑘

�𝑟𝑟𝑖𝑖} of 𝒞𝒞𝐹𝐹
�𝑟𝑟𝑖𝑖 that give valid vertices.

5. Push 𝑠𝑠𝑖𝑖 out of the active set     , and into the inactive set    .
6. Infer the state vector �𝑠𝑠𝑖𝑖 of adjacent faces, and push {�𝑠𝑠𝑖𝑖|�𝑠𝑠𝑖𝑖 ∉ } into the active set    .

Note that the analytic cell connecting 𝒞𝒞𝐹𝐹
�𝑟𝑟𝑖𝑖 at a boundary �𝐻𝐻𝑙𝑙𝑘𝑘

�𝑟𝑟𝑖𝑖 has its state vector switching only at the 𝑘𝑘𝑡𝑡𝑡
neuron of layer 𝑙𝑙.

7. Repeat steps 3 to 6, until the active set     is cleared up.



Analytic Marching – computational analysis and parallel implementation

Computational complexities
Assume that the SDF 𝐹𝐹 = 𝑠𝑠 ∘ 𝑇𝑇 is built on an MLP of 𝐿𝐿 hidden layers, each of which has 𝑛𝑛 neurons, and 

thus 𝑁𝑁 = 𝑛𝑛𝐿𝐿
The complexity of our Analytic Marching algorithm has an order of 
Ideally, its complexity is exponential w.r.t. depth 𝐿𝐿 and polynomial w.r.t. width 𝑛𝑛

Parallel implementations
The proposed analytic marching can be naturally implemented in parallel, and initialization of multiple 
surface points would help recover components of the surface that are possibly isolated

Training objective
For any 𝑥𝑥 ∈ ℝ3, let 𝑠𝑠(𝑥𝑥) denote its ground-truth value of signed distance to the surface. We use the 
following regularized objective to train a SDF 𝐹𝐹 = 𝑠𝑠 ∘ 𝑇𝑇,

The unit gradient regularizer aims to promote learning of a smooth gradient field



Experiments

Dataset
ShapeNet - A repository of many 3D shapes

Evaluation metrics
Chamfer Distance (CD),              Earth Movers Distance (EMD), 
Intersection over Union (IoU),    F-score (F),
Wall-clock time (Time),               Number of faces (Face No.).

Ablation study – Depth and Width

“D” stands for depth, “W” stands for width.
Given a fixed number of neurons, it seems that properly deep networks are advantageous in terms of 

precision-efficiency trade off
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Results of other object categories
It tells that different categories have different complexity. It seems that the complexities of “Chair” are 

higher, and those of “Airplane” are lower.

Comparisons with existing meshing algorithms
We compare our proposed algorithm (Analytic Marching, AM) with existing algorithms of Greedy Meshing 

(GM), Marching Cubes (MC), Marching Tetrahedra (MT), and Dual Contouring (DC).
Their meshing accuracy depends on the sampling resolution. We implement them under a range of sampling 

resolutions from 323 to a GPU memory limit of 5123



Experiments

Comparisons with existing meshing algorithms

Under different evaluation metrics, recovery accuracies of these methods are upper bounded by our proposed 
one. Note that the dominating computations of competitors are implemented on GPU, which gives them an unfair
advantage of computational efficiency.
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Comparisons with existing meshing algorithms
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Comparisons with existing meshing algorithms

MC128 AM
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The 3D mesh obtained by ours can be mathematically guaranteed to be a polygonal mesh



Promising directions

 Use hypernetwork to learn parameters of the MLP
 Apply postprocessing to retain fine details of the surface mesh
 Other explorations of the relationship between deep learning 

and shape representation
 A more efficient implementation of Analytic Marching



Thank you!


	Analytic Marching: An Analytic Meshing Solution from�Deep Implicit Surface Networks
	Introduction - Surface representation
	Introduction - Isosurface extraction
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Motivation – connecting the properties of local linearity in two worlds
	Linear mapping basics of MLPs
	Region-wise functionals and mappings of MLPs 
	Region-wise functionals and mappings of MLPs 
	When MLPs are trained to be SDFs
	When MLPs are trained to be SDFs
	A theorem that guarantees analytic cells/faces connect to form a closed mesh
	An algorithm of Analytic Marching
	Analytic Marching – algorithmic details
	Analytic Marching – computational analysis and parallel implementation
	Experiments
	Experiments
	Experiments
	Experiments
	Experiments
	Experiments
	Promising directions
	幻灯片编号 31

