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What is 3D Reconstruction?

Vision

Reconstruction

Graphics

Rendering

2D Observations 3D Representation



Multi-view 3D Reconstruction 
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Building Rome in a Day. 
Agarwal et al. ICCV’09

static scene but.. the world is dynamic



Multi-view 3D Reconstruction 
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Building Rome in a Day. 
Agarwal et al. ICCV’09

The Relightables: Volumetric Performance Capture of Humans 
with Realistic Relighting. Guo et al. SIGGRAPH Asia’19

static scene 100 cameras
too expensive for me :(



Learning-based Single-view 3D Reconstruction 
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Neural 
Network

3D prior learned during training

Need supervision!



Supervision during Training 
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3D ground truth or 
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3D ground truth or 
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Unsupervised Learning of 3D Objects



Unsupervised Learning of 3D Objects
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instance-specific 3D shapessingle-view images of a category

NO other supervision!

Training Data Output

Unsup3D
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Unsupervised Learning of 3D Objects
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instance-specific 3D shapessingle-view images of a category

NO other supervision!

Training Data Output

Unsup3D



Symmetries in the World
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Training Pipeline: 
Photo-Geometric Autoencoding
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43

Renderer

view ! texture

encoder

decoder

encoder

depth "

encoder

decoder

input #

reconstruction $#

Reconstruction
Loss



Photo-Geometric Autoencoding

44

Renderer

view ! texture

encoder

decoder

encoder

depth "

encoder

decoder

input #

reconstruction $#

Reconstruction
Loss

Q1: How to avoid degenerate solutions? 



Photo-Geometric Autoencoding

45

Renderer

view ! texture

encoder

decoder

encoder

depth "

encoder

decoder

input #

reconstruction $#

Reconstruction
Loss

Q1: How to avoid degenerate solutions? A1: Enforce symmetry



Photo-Geometric Autoencoding

46

view ! texture

encoder

decoder

encoder

flippeddepth "

encoder

decoder

depth "′

: horizontal flip
input #

? ?

Q1: How to avoid degenerate solutions? A1: Enforce symmetry by flipping



Photo-Geometric Autoencoding

47

Renderer

view ! texture

encoder

decoder

encoder

flippeddepth "

encoder

decoder

depth "′

: horizontal flip
input #

reconstruction $#

Reconstruction
Loss

? ?

?

flip switch

Q1: How to avoid degenerate solutions? A1: Enforce symmetry by flipping



Photo-Geometric Autoencoding

48

Renderer

view ! texture

encoder

decoder

encoder

flippeddepth "

encoder

decoder

depth "′

: horizontal flip
input #

reconstruction $#

Reconstruction
Loss

? ?
flip switch

Q1: How to avoid degenerate solutions? A1: Enforce symmetry by flipping



Photo-Geometric Autoencoding

49

Renderer

view ! texture

encoder

decoder

encoder

flippeddepth "

encoder

decoder

depth "′

: horizontal flip
input #

reconstruction $#

Reconstruction
Loss

? ?

?

flip switch

Q1: How to avoid degenerate solutions? A1: Enforce symmetry by flipping



Photo-Geometric Autoencoding

50

Renderer

view ! texture

encoder

decoder

encoder

flippeddepth "

encoder

decoder

depth "′

: horizontal flip
input #

reconstruction $#

Reconstruction
Loss

flip switch

Q1: How to avoid degenerate solutions? A1: Enforce symmetry by flipping



Photo-Geometric Autoencoding

51

view ! texture

encoder

decoder

encoder

flippeddepth "

encoder

decoder

depth "′

: horizontal flip
input #

Q2: What about non-symmetric lighting? 



Photo-Geometric Autoencoding

52canonical view &

Renderer
shading

input #

view ! light ' albedo (

reconstruction $#

Reconstruction
Loss

encoder

decoder

encoder encoder

albedo (′depth "

encoder

decoder

depth "′

: horizontal flip

Q2: What about non-symmetric lighting? A2: Enforce symmetry on albedo

flip switch



Photo-Geometric Autoencoding

53canonical view &

Renderer
shading

input #

view ! light ' albedo (

reconstruction $#

Reconstruction
Loss

encoder

decoder

encoder encoder

albedo (′depth "

encoder

decoder

depth "′

: horizontal flip

flip switch

Q3: Non-symmetric albedo, deformation, etc? 



Photo-Geometric Autoencoding

54canonical view &

Renderer
shading

input #

view ! light ' albedo (

reconstruction $#

conf. )′conf. )

Reconstruction
Loss

encoder

decoder

encoder

decoder

encoder encoder

albedo (′depth "

encoder

decoder

depth "′

: horizontal flip

Q3: Non-symmetric albedo, deformation, etc? A3: Predict uncertainty

flip switch



Photo-Geometric Autoencoding

55canonical view &

Renderer
shading

input #

view ! light ' albedo (

reconstruction $#

conf. )′conf. )

Reconstruction
Loss

encoder

decoder

encoder

decoder

encoder encoder

albedo (′depth "

encoder

decoder

depth "′

: horizontal flip

Q3: Non-symmetric albedo, deformation, etc? A3: Predict uncertainty

flip switch



Photo-Geometric Autoencoding

56canonical view &

Renderer
shading

input #

view ! light ' albedo (

reconstruction $#

conf. )′conf. )

Reconstruction
Loss

encoder

decoder

encoder

decoder

encoder encoder

albedo (′depth "

encoder

decoder

depth "′

: horizontal flip

Q3: Non-symmetric albedo, deformation, etc? A3: Predict uncertainty

flip switch



Photo-Geometric Autoencoding

57canonical view &

Renderer
shading

input #

view ! light ' albedo (

reconstruction $#

conf. )′conf. )

Reconstruction
Loss

encoder

decoder

encoder

decoder

encoder encoder

albedo (′depth "

encoder

decoder

depth "′

: horizontal flip

Q3: Non-symmetric albedo, deformation, etc? A3: Predict uncertainty

flip switch



Photo-Geometric Autoencoding

58canonical view &

Renderer
shading

input #

view ! light ' albedo (

reconstruction $#

conf. )′conf. )

Reconstruction
Loss

encoder

decoder

encoder

decoder

encoder encoder

albedo (′depth "

encoder

decoder

depth "′

: horizontal flip

Q3: Non-symmetric albedo, deformation, etc? A3: Predict uncertainty

flip switch



Photo-Geometric Autoencoding

59canonical view &

Renderer
shading

input #

view ! light ' albedo (

reconstruction $#

conf. )′conf. )

Reconstruction
Loss

encoder

decoder

encoder

decoder

encoder encoder

albedo (′depth "

encoder

decoder

depth "′

: horizontal flip

Q3: Non-symmetric albedo, deformation, etc? A3: Predict uncertainty

flip switch



Photo-Geometric Autoencoding

60canonical view &

Renderer
shading

input #

view ! light ' albedo (

reconstruction $#

conf. )′conf. )

Reconstruction
Loss

encoder

decoder

encoder

decoder

encoder encoder

albedo (′depth "

encoder

decoder

depth "′

: horizontal flip

Q3: Non-symmetric albedo, deformation, etc? A3: Predict uncertainty

flip switch



61

Images taken from CelebA, 3DFAW

Results on human faces
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Images taken from [1]

Results on face paintings

[1] Elliot J. Crowley, Omkar M. Parkhi, and Andrew Zisserman. Face painting: querying art with photos. In Proc. BMVC, 2015.
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Images taken from [1] and the Internet

Results on abstract faces

[1] Elliot J. Crowley, Omkar M. Parkhi, and Andrew Zisserman. Face painting: querying art with photos. In Proc. BMVC, 2015.
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Video clips taken from VoxCeleb2

Results on video frames
We do not use videos for training or fine-tuning. These results are obtained 
by applying our model trained on CelebA frame by frame.
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Images taken from CelebA

Relighting effects
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Images taken from [2] and [3]

Results on cat faces

[2] Weiwei Zhang, Jian Sun, and Xiaoou Tang. Cat head detection - how to effectively exploit shape and texture features. In Proc. ECCV, 2008.
[3] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In Proc. CVPR, 2012.
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Images rendered using ShapeNet

Results on synthetic cars
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input reconstruction input reconstruction



Symmetry Plane Visualization
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Asymmetry Visualization
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Discussion: 
Ablation Studies
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Ablation – Symmetry

Normal Shading Albedo Shaded Recon.

full

w/o
albedo flip

w/o
depth flip

Depth

Insight #1: Symmetry avoids degeneracy

Input
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Ablation – Lighting (Shape from Shading)

Input

Normal Shading Albedo Shaded Recon.

full

w/o
lighting

Depth

Insight #2: Lighting avoids bumpy shapes and provides cues for shape
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Ablation – Confidence Maps

Insight #3: Confidence maps allows for asymmetry modelling

Asymmetry perturbation

input recon. w/ conf. recon. w/o conf.

conf. ! conf. !′
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Limitations
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Limitation #1: Poor side reconstruction

Why?
- Canonical depth map cannot represent the shape of the side

input reconstructions input reconstructions
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Limitation #2: Side pose input

Why?
- There are no/few symmetric correspondences present in the image, 

which voids the symmetry regularization
- No enough side images in the training set 

input reconstructions
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Limitation #3: Lambertian shading

Why?
- We assume Lambertian shading with one dominant directional light, 

and do not model specularity and shadow

input reconstructions
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Limitation #4: Dark texture vs. dark shading

Why?
- Disentangling dark texture and dark shading is hard. The model may 

produce dark shading with spiky shape to reconstruct dark texture. 

input reconstructions
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v We present an unsupervised method for learning deformable 
3D objects from only raw single-view images

v Bilateral symmetry in common objects provides a powerful 
constraint for learning 3D shapes

v Shading provides important geometric cues and helps 
regularize shape

v By modeling symmetric albedo and non-symmetric shading 
separately, our model automatically learns intrinsic image 
decomposition without supervision

v Confidence maps can be used to model asymmetries

Conclusions
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v 3D understanding is possible from only single-view 2D 
observations; image recognition should go beyond 2D

v Reducing supervision in training is important for 3D 
understanding in the wild

v Physical cues and visual patterns are useful, such as symmetry, 
shading, planes, repetitions, etc

Key Takeaways
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Thank you!

Demo: bit.ly/2zBNjXx
Code: github.com/elliottwu/unsup3d

http://bit.ly/2zBNjXx
https://github.com/elliottwu/unsup3d

