Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Shangzhe Wu Christian Rupprecht Andrea Vedaldi

VISUAL GEOMETRY GROUP, UNIVERSITY OF OXFORD

Agenda

- Problem Introduction
- Method Overview
- Results
- Discussions
- Conclusions

What is 3D Reconstruction?

2D Observations

3D Representation

Multi-view 3D Reconstruction

Building Rome in a Day. Agarwal et al. ICCV'09

static scene

but.. the world is dynamic

Multi-view 3D Reconstruction

~100x 12MP cameras @ 60Hz

Building Rome in a Day. Agarwal et al. ICCV'09

static scene

The Relightables: Volumetric Performance Capture of Humans with Realistic Relighting. Guo et al. SIGGRAPH Asia'19

100 cameras too expensive for me :(

Learning-based Single-view 3D Reconstruction

Supervision during Training

3D ground truth or shape models

multi-views

depth maps

silhouettes

keypoints

camera viewpoint

Unsupervised Learning of 3D Objects

3D ground truth or shape models

multi-views

depth maps

silhouettes

keypoints

camera viewpoint

Unsupervised Learning of 3D Objects

Training Data

Output

single-view images of a category NO other supervision!

instance-specific 3D shapes

input

reconstruction

Unsupervised Learning of 3D Objects

Training Data

Output

single-view images of a category NO other supervision!

instance-specific 3D shapes

Symmetries in the World

Training Pipeline: Photo-Geometric Autoencoding

Q1: How to avoid degenerate solutions?

Q1: How to avoid degenerate solutions?

A1: Enforce symmetry

Q1: How to avoid degenerate solutions?

Q1: How to avoid degenerate solutions?

Q2: What about non-symmetric lighting?

Q2: What about non-symmetric lighting?

A2: Enforce symmetry on albedo

Q3: Non-symmetric albedo, deformation, etc?

Q3: Non-symmetric albedo, deformation, etc?

Q3: Non-symmetric albedo, deformation, etc?

Q3: Non-symmetric albedo, deformation, etc?

Q3: Non-symmetric albedo, deformation, etc?

A3: Predict uncertainty

4

Q3: Non-symmetric albedo, deformation, etc?

Q3: Non-symmetric albedo, deformation, etc?

Q3: Non-symmetric albedo, deformation, etc?

Results on human faces

Images taken from CelebA, 3DFAW

input

reconstruction

input

reconstruction

Results on face paintings

Images taken from [1]

[1] Elliot J. Crowley, Omkar M. Parkhi, and Andrew Zisserman. Face painting: querying art with photos. In Proc. BMVC, 2015.

reconstruction

reconstruction

64

Results on abstract faces

Images taken from [1] and the Internet

input

reconstruction

Results on video frames

Video clips taken from VoxCeleb2

We do **not** use videos for training or fine-tuning. These results are obtained by applying our model trained on CelebA **frame by frame**.

input

input

new view

rotated

recon.

new view

rotated

input

recon.

new view

recon.

new view

rotated

Relighting effects

Images taken from CelebA

input

reconstruction

input

reconstruction

Results on cat faces

Images taken from [2] and [3]

[2] Weiwei Zhang, Jian Sun, and Xiaoou Tang. Cat head detection - how to effectively exploit shape and texture features. In Proc. ECCV, 2008.
 [3] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In Proc. CVPR, 2012.

input

reconstruction

input

reconstruction

Results on synthetic cars

Images rendered using ShapeNet

Symmetry Plane Visualization

Asymmetry Visualization

Discussion: Ablation Studies

Ablation – Symmetry

Ablation – Lighting (Shape from Shading)

Insight #2: Lighting avoids bumpy shapes and provides cues for shape

Ablation – Confidence Maps

Asymmetry perturbation

conf. σ conf. σ'

input

recon. w/ conf.

Insight #3: Confidence maps allows for asymmetry modelling

Discussion:

Limitations

Limitation #1: Poor side reconstruction

Why?

- Canonical depth map cannot represent the shape of the side

Limitation #2: Side pose input

input

reconstructions

Why?

- There are no/few symmetric correspondences present in the image, which voids the symmetry regularization
- No enough side images in the training set

Limitation #3: Lambertian shading

input

reconstructions

Why?

- We assume Lambertian shading with one dominant directional light, and do not model specularity and shadow

Limitation #4: Dark texture vs. dark shading

input

reconstructions

Why?

- Disentangling dark texture and dark shading is hard. The model may produce dark shading with spiky shape to reconstruct dark texture.

Conclusions

- We present an <u>unsupervised</u> method for learning deformable
 3D objects from only raw single-view images
- <u>Bilateral symmetry</u> in common objects provides a powerful constraint for learning 3D shapes
- <u>Shading</u> provides important geometric cues and helps regularize shape
- By modeling symmetric albedo and non-symmetric shading separately, our model automatically learns <u>intrinsic image</u> <u>decomposition</u> without supervision
- Confidence maps can be used to model asymmetries

Key Takeaways

- 3D understanding is possible from only single-view 2D observations; image recognition should go beyond 2D
- Reducing supervision in training is important for 3D understanding in the wild
- Physical cues and visual patterns are useful, such as symmetry, shading, planes, repetitions, etc

Demo

He more a cost of the contracted integrited high, where which 3 will be automatically determined. The optimated integrals talk cases for any other purposes

Thank you!

Demo: <u>bit.ly/2zBNjXx</u> Code: <u>github.com/elliottwu/unsup3d</u>

