DeepCap: Monocular Human Performance Capture Using Weak Supervision

Marc Habermann, Weipeng Xu, Michael Zollhoefer,

Gerard Pons-Moll, and Christian Theobalt

Human performance capture from a monocular camera

Monocular setting is inherently ambiguous

High-dimensional problem
– Pose and surface deformation

Source: https://www.fiylo.de/

Related Work

Capture using parametric models

Xiang et al. 2018

Kanazawa et al. 2018

Metaxas et al. 1993, Plaenkers et al. 2001, Sminchisescu et al. 2003, Sigal et al. 2004, Joo et al. 2018, Pavlakos et al. 2018, Kanazawa et al. 2019, Pavlakos et al. 2019, ...

Related Work

Monocular template-free capture

Zheng et al. 2019

Saito et al. 2019

Huang et al. 2018, Varol et al. 2018, Natsume et al. 2019, ...

Related Work

Template-based capture

Habermann et al. 2019

Xu et al. 2018

Carranza et al. 2003, Bray et al. 2006, Starck et al. 2007, De Aguiar et al. 2008, Brox et al. 2010, Cagniart et al. 2010, ...

Learning based approach

Pose + surface deformation

Weak multi-view supervision

Personalized Character Model

Template mesh

Embedded graph

Skeleton

Inference Time

Direct Supervision?

Ground truth 3D pose

Difficult to obtain

Ground truth 3D surface

Weak Supervision

Training Data – Weak Multi View

Calibrated multi-view images

2D keypoints

Color keying

Foreground mask

Pipeline

Kinematics Layer

Function $f_m(\boldsymbol{\alpha}, \boldsymbol{\theta}): \mathbb{R}^{30} \to \mathbb{R}^3$ per landmark m

Skeletool pose

Camera and root relative 3D

landmark positions $P_{c',m}$

max planck institut informatik

Rigid transform for landmark $P_{c',m}$

Multi-view Sparse Keypoint Loss

$$L_{kp}(\boldsymbol{P}) = \sum_{c} \sum_{m} \left\| \pi_{c}(\boldsymbol{P}_{m}) - \boldsymbol{p}_{c,m} \right\|_{2}^{2}$$

Projecting (π) 3D landmark P_m into camera view c

Comparing to 2D joint detection $p_{c,m}$

DefNet

Regresses embedded deformation* in canonical pose

Per node k rotation angles A_k and translation T_k

*(Sumner et al. 2007, Sorkine et al. 2007)

max planck institut informatik

Marc Habermann 19

Rigid transform for landmark m and vertex i

Camera and root relative

3D landmark $M_{c',m}$ and vertex $V_{c',i}$

Global

3D landmark M_m and vertex V_i

Multi-view Sparse Keypoint Graph Loss

$$L_{kpg}(\boldsymbol{P}) = \sum_{c} \sum_{m} \left\| \pi_{c}(\boldsymbol{M}_{m}) - \boldsymbol{p}_{c,m} \right\|_{2}^{2}$$

Global 3D landmark M_m

Non-rigid Silhouette Loss

Set of boundary vertices for camera c

Distance transform image

Qualitative Evaluation

Habermann et al. 2019

Overlay on **reference** view

max planck institut informatik

Ours

Qualitative Evaluation

3D view

Overlay on input image

Saito et al. 2019

Zheng et al. 2019

Ours

Quantitative Evaluation

Surface reconstruction accuracy

More results

Xu

Marc Habermann Weipeng Michael Zollhoefer Thank you!

Gerard Pons-Moll

Christian Theobalt