Neurosymbolic 3D Models:
Learning to Generate 3D Shape Programs

Daniel Ritchie

I(
S

2
I
i

BROWN

1] [} Computer Science

£ E
EHE

>

2

@)
2
e
—

WHO AM |?

y

&
Rhode Island

IVETrSI

Brown Un

J

idence
in the US

Prov

L ocated in

)

(US News

8Y

IVersl

#14 Un

wn Compu

= I

ter Science

« 37 full-time faculty

e Z2-year Masters program

 Fully-funded PhD program (5 years)

e #25 for CS Graduate Study (US News)
B e S =

Department -

X
- @
Y 4

? l/
)
i

Brown Visual Computing BVC

£ E
G E

« Nine (9) faculty

« Active research in graphics,
vision, HCI, visualization, ...

« Regularly publish in top visual
computing venues
(SIGGRAPH, CVPR, ICCV, ...)

visual.cs.brown.edu

http://visual.cs.brown.edu/

B

?
’l

Brown Visual Computing BVC

£ E
CE

« Andyvan Dam:
co-founder of ACM SICGRAPH
(pre-cursor to SIGGRAPH)

://visual.cs.brown.edu

http://visual.cs.brown.edu/

)

Hl
?

Brown Visual Computing BVC

£ E
GE

« Andyvan Dam &
Spike Hughes:
Authors of
“Computer Graphics:
Principles and Practice”

http://visual.cs.brown.edu/

My Research (Broadly)

My Research (Specifically)

Generative Models What =ll's 3D Structures
. Programs neurosymbolic 3D models, and . Objects
. Deep Networks how do they relate to all of . Scenes

this?

FIRST, ALITTLE BACKGROUND
& MOTIVATION...

Increasing Demand fFor 3D Content

Traditional driver: Entertainment (Games, VR, ...)

Increasing Demand fFor 3D Content

E-Commerce (esp. furniture /interior design)

Weldy Panel Configurable
Bedroom Set

$1,047.96

3»." U | =

ANRAANAR

12

Increasing Demand fFor 3D Content

New driver: Artificial Intelligence (“Graphics for Al")

y B BN
F 18R B
3 B e ¢
RN B
. B :
¥ [y | 3
f

A N

3D Scene Semantic Segments

Increasing Demand fFor 3D Content

New driver: Artificial Intelligence (“Graphics for Al")

$B Habitat

aihabitat.org

Habitat: A Platform for Embodied Al Research

facebook Artificial Intelligence

Increasing Demand for 3D Content

New driver: Artificial Intelligence (“Graphics for Al")

|
|
|

‘- !‘

Learning to Generalize Kinematic Models to Novel Objects, Abbatematteo et al. 2019

Current Practice Can't Meet Demand

Mannual 3D modeling: still slow, still hard to learn

Maya
File Edit Create Select Modify Display Windows Mesh Edit Mesh Mesh Tools Mesh Display Curves Surfaces Deform Workspace : Maya Classic
Modeling ¥ EmE~>c HYES QO QY@ Q- + NoLive Surface + Symmetry: Off GEmEr OF
= Poly Modeling
oS o & Y S e e st E . o - & |~
 BRBLVNS @ STE| % | @M b 3 & s z
- .) A E
View Shading Lighting Show Renderer Panels A [Featurey | Skeich | Evaluste | Dimipet "
2 rzn ~- £ - o r , 4 A
k MM LSO ZIBEDNOBEDID S | &0 M EER) Q2 000 « 1.00 Channels Edit Object Show] | command Manager Tab
3
2
k g % Bracket SLDPRT
%
27 5
8
=
[| g Feature Manager
design tree
¢
n
Display
— Layers Options Help
¢ ¢ 4 &
4 » _ .
Graphics Area
| 1 e 14 i4 €D »idIm
1 1 1 120 120 200 24 fps ¥y ©
M S .
e Document Window
Select Tool: select an object

WYENE Solidworks

“The difficulty of generating images has been overwhelmed by a
five-thousand-fold improvement in price/performance of
computing.

What remains hard is modeling...the grand challenges in three-
dimensional graphics are to make simple modeling easy and to
make complex modeling accessible to far more people.”

— Bob Sproull, 1990

Generative Models to the Rescue!?

For the purposes of this talk:

Generative model: a procedure which can be executed to
generate novel instances of some 3D object class

Benefits of Generative Models

3D content generation at scale

¢ ’

speediree UNREAL

SpeedTree, Unreal Engine

Benefits of Generative Models

Explore modeling possibilities

Learning Implicit Fields for Generative Shape Modeling, Chen & Zhang 2019

Benefits of Generative Models

Strong prior for vision systems

StructureNet: Hierarchical Graph Networks For 3D Shape Generation, Mo et al. 2019

Two Classes of Generative Model

Procedural Models
Pros:
« High quality output by construction

Advanced Procedural Modeling of Architecture, Schwartz & Muller 2015

Two Classes of Generative Model

Procedural MOdElS Parcel --> split("x") { rand(8, 16): Footprint | ~1: Parcel }

Footprint --> event(IdentifyLargest) extrude(area()/6) Mass
F)[Z)f;. Mass --> case { get("isLargest"): Offices | else: Apartments }
: Offices --> ..

Apartments -->

event IdentifyLargest =

« High quality output by construction
* Interpretable & editable areach(notes) { set(risLargeste, Sinder om 1urgests >

Advanced Procedural Modeling of Architecture, Schwartz & Muller 2015

Two Classes of Generative Model

Procedural MOdelS Parcel --> split("x") { rand(8, 16): Footprint | ~1: Parcel }
Footprint --> event(IdentifyLargest) extrude(area()/6) Mass
F)[Z)f;. Mass --> case { get("isLargest"): Offices | else: Apartments }

Offices --> ..
Apartments -->

event IdentifyLargest =

« High quality output by construction
* Interpretable & editable areach(notes) { set(risLargeste, Sinder om 1urgests >

cons:
e Difficult to author

Advanced Procedural Modeling of Architecture, Schwartz & Muller 2015

Two Classes of Generative Model

Procedural Models

Pros:

« High quality output by construction
* |nterpretable & editable

cons:
e Difficult to author
« Limited output variety

Learning to Generalize Kinematic Models to Novel Objects, Abbatematteo et al. 2019

Two Classes of Generative Model

Deep Generative Models

Pros:

« Variety (any class of shape)

« Easy to author (“just add data”)

Learning Implicit Fields for Generative Shape Modeling, Chen & Zhang 2019

Recent High-Profile Successes

3D-GAN Octree Generating Nets PointFlow

Octree Octree
level 1 ue level 3

/
G(z) in 3D Voxel Space
64x64x64

Pixel2Mesh IM-Net

T

Input Image Perceptual Feature Pooling Pel u

3D Poinl'aoud
(a) Possible Inputs (b) Output Mesh from the 2D Image (c) Output Atlas (optimized) (d) Textured Output

Two Classes of Generative Model

Deep Generative Models

Pros:

« Variety (any class of shape)

« Easy to author (“just add data”)

Cons:
* |nconsistent output quality
« |nscrutable representation

Two Classes of Generative Model

Procedural Models Deep Generative Models

Pros: Pros:

« High quality output by construction ¢ Variety (any class of shape)

* |nterpretable & editable « Easy to author (“just add data”)
T How can we get all of these...

Cons: Ccons:

« Difficult to author « |nconsistent output quality

« Limited output variety « |nscrutable representation

Two Classes of Generative Model

Procedural Models Deep Generative Models

Pros: Pros:

« High quality output by construction ¢ Variety (any class of shape)

* |nterpretable & editable « Easy to author (“just add data”)

e How can we get all of these...

\ ...wWith none of these? /

Generative Models Capture Variaton

Some modes can easily be expressed
symbolically:

« Hierarchy

StructureNet: Hierarchical Graph Networks for 3D Shape Generation, Mo et al. 2019

Generative Models Capture Variaton

Some modes can easily be expressed
symbolically:

« Hierarchy

e Connectivity

GRASS: Generative Recursive Autoencoders for Shape Structures, Li et al. 2018

Generative Models Capture Variaton

Some modes can easily be expressed
symbolically:

« Hierarchy
e Connectivity

« Symmetry

GRASS: Generative Recursive Autoencoders for Shape Structures, Li et al. 2018

Generative Models Capture Variaton

Some modes are hard to express
symbolically:

« Fine-detailed geometry

Learning Implicit Fields for Generative Shape Modeling, Chen & Zhang 2019

Generative Models Capture Variaton

Some modes are hard to express
symbolically:

« Fine-detailed geometry

« Complex inter-part correlations

Learning Implicit Fields for Generative Shape Modeling, Chen & Zhang 2019

Generative Models Capture Variaton

Design Philosophy:

Use symbols where possible
Use neural nets for everything else

Neurosymbolic 3D Model:

A generative model of a class of 3D objects which
models some modes of variability via explicit symbols
and others via a neural latent space

Neurosymbolic 3D Model Design Space

NEUROSYMBOLIC MODELS OF
SHAPE STRUCTURE

What Do | Mean by Shape Structure?

Parts (as oriented bounding boxes)

Relations
 Hierarchy, connectivity, symmetry, ...

Useful despite low geometric detail

« Ex:robot motion planning = infer all
parts + relations given point cloud

Observation reglljlar surface 8 frame
/

Focus on manufactured objects o leg—,~ runner .-

« E.qg.chairs, tables, airplanes...

StructureNet: Hierarchical Graph Networks for 3D Shape Generation, Mo et al. 2019

What Do | Mean by Shape Structure?

Parts (as oriented bounding boxes)

Relations
« Hierarchy, connectivity, symmetry, ...

Useful despite low geometric detail

« Ex:robot motion planning = infer all
parts + relations given point cloud
observation

Focus on manufactured objects

« E.qg.chairs, tables, airplanes...

« (Can extend to organic objects via e.q.
generalized cylinder decomposition

Generalized Cylinder Decomposition, Zhou et al. 2015

The “Holy Grail” of Structure Modeling

A single, interpretable procedural model that generates the

structures of every object in a given shape class (e.g. chairs,
airplanes)

But...

Two Classes of Generative Model

Procedural Models

Pros:

« High quality output by construction
* |nterpretable & editable

cons:
e Difficult to author
« Limited output variety

\ Can a strategic use of neural nets eliminate these?

Eliminating Procedural Cons

Problem: Hard to author
Solution: Train a neural net to write them for us

Problem: Limited output variety

Solution: Latent space of neural net will capture the
variability that the symbolic program does not

ShapeAssembly: Learning to Generate Programs for
3D Shape Structure Synthesis [SICGRAPH Asia 2020]

R. KENNY JONES, Brown University
THERESA BARTON, Brown University
XIANGHAO XU, Brown University

KAI WANG, Brown University

ELLEN JIANG, Brown University

PAUL GUERRERO, Adobe Research
NILOY MITRA, University College London
DANIEL RITCHIE, Brown University

def Chair(): def Chair(): def Chair():
bbox = Cuboid(1.2, 1.4, 1, T) bbox = Cuboid(.82, 1.6, 85, T) bbox = Cuboid(| T)
base = Base(.9, .5, .8, T) base = Base(.75, .66, .66, T) base = Base(L T)
seat = Seat(1.1,.1, 9,T) = z seat = Seat(.8, .13, 85, T) seat
back = Back(1.1, .9, 2, F) <—— Interpolation in ShapeAssembly Program Space —— back = Back(8, 9, .1,T) back = Back()
am = Cuboid(.1, 4, .7, F) attach(base, bbox, .5, 0, .5, .5, 0, .5) attach(base, bbox, 5,0, 5, 5,0, .5)
attach(base, bbox, .5, 0, .5, .5, 0, .5) attach(back, bbox, 5, 1, .5, .5, 1,.05) attach(back, bbox, .5, 1, 5, .5, 1, .05)
squeeze(back, bbox, base, top, .5, .1) attach(seat, base, .5, .0, .5, .5, 1, .5) attach(seat, base, .5, .0, 5, 5,1, .5)
attach(seat, base, .5, 0, .5, .5, 1, .5) attach(back, seat, .5, .0, .5, .5, .75, .05) attach(Back, seat, .5, .0, .5, .5, .75, .05)
attach(arm, back, .5, .5, 0, .1, .3, .5)
attach(arm, seat, .5, 0, 5, .1, .7, .5)
reflect(arm, X) def Chair(): def Chair(): def Backil, w, b, aligned): def Backél, w, b, aligned):
e “ee e - id(l. h, ali bbox = Cuboid(l, w, h, aligned)
def Back(l, w, b, allgned): | detBack(, w, h, aligned): (| defBack(l w, h, aligned): | e s) surface = Cuboid(B
bbox = Cuboid(l, w, h, aligned) bbox = Cuboid(, w, h, aligned) bbox = Cuboid(l, w, h, aligned) slat = Cuboid(05, .5, 05, T) slat = Cuboid(05, T)
surface = Cuboid(1.16, .64, .13, T) surface = Cuboid(1.08, .58, .11, T) surface = Cuboid(.9, .51, .08, T) attach(surface, bbox. 5, 1, 5. 5.1, 5) attach(surface, bbox, 5, 1, .5, 5, 1, .5)
slat = Cuboid(.04, .76, .1, F) slat = Cuboid(.04, .73, .1, F) slat = Cuboid(.05 .6, .07, F) S . izl eth squeeze(siat, bbox, surface, bot, .1, .5)
queeze(slat, bbox, surface, bot, .1, .5) q
attach(surface, bbox, .5, 1, .5, .5, 1,.7) attach(surface, bbox, .5, 1, 5, .5, 1, .6) attach(surface, bbox, .5, 1, .5, 5, 1, .5) translate(slat, X, 3, 0.8) translate(slat, X, [} 0.8)
attach(slat, bbox, .5, 0, .5, .2, 0, 45) attach(slat, bbox, .5, 0, .5, .15, 0, .3) attach(slat, bbox, .5, 0, .5, .1, 0, .3 PRSP
attach(slat, surface, .5, 6, .8, .2, .3, .2) attach(slat, surface, 6, .5, .6, .1, .1,.1) attach(slat, surface, .5, .8, .5, .1, .1, .3)
reflect(slat, X) reflect(slat, X) reflect(slat, X)
I
execute execute

'

t

Fig. 1. We present a deep generative model which learns to write novel programs in SHAPEASSEMBLY, a domain-specific language for modeling 3D shape
structures. Executing a SHAPEASSEMBLY program produces a shape composed of a hierarchical connected assembly of part proxies cuboids. Our method
develops a well-formed latent space that supports interpolations between programs. Above, we show one such interpolation, and also visualize the geometry
these programs produce when executed. In the last column, we manually edit the continuous parameters of a generated program, in order to produce a
variant geometric structure with new topology.

A Neurosymbolic 3D Modeling Pipeline

ShapeAssembly DSL
(Section 4)

Start— BBlock; CBlock; ABlock; SBlock;

BBlock — bbox = Cuboid(l, h, w, True)

CBlock — ¢,, = Cuboid(l, w, h, a) ; CBlock | None
ABlock — Attach ; ABlock | Squeeze ; ABlock | None
SBlock — Reflect ; SBlock | Translate ; SBlock | None
Attach— attach(cp,, cn, X1, Y1, 21, X2, Y2, 22)

Squeeze — squeeze(cp,, Cnys Cny, [U, V)

Reflect— reflect(c,,, axis)

Translate — translate(cp,, axis, m, d)

f — right | left | top | bot | front | back

axis— X | Y| Z

LhweR3

x,y,z,u,0,d € [0,1]%

a € [True,False]

n,meZ*

ShapeAssembly

An “assembly language” for part-based shapes

T

Low-level instructions Operates by assembling parts

Anatomy of a ShapeAssembly Program

Root Program
def Chair():

bbox = Cuboid(1, 1.5, .8, True)

base = Base(.8, .5, .8, True

cubel = Cuboid(.8, .1, .8, True)

back = Back(.9, .8, .07, True)
attach(base, bbox, .5, 0, .5, .5, 0, .5)
attach(cubel, base, .5, 0, .5, .5, 1, .5)
squeeze(back, bbox, cubel, top, .5, .05)

def Base(l, w, h, aligned):
bbox = Cuboid(l, w, h, aligned)
cube® = Cuboid(.2, .5, .2, True)

cubel = Cuboid(.2, .5, .2, True)
squeeze(cubed, bbox, bbox, top, .1, .1)
squeeze(cubel, bbox, bbox, top, .1, .8)
reflect(cubed, X)

reflect(cubel, X)

. def Back(l, w, h, aligned):
bbox = Cuboid(l, w, h, aligned)
cube® = Cuboid(.9, .4, .07, True)
cubel = Cuboid(.1, .4, .05, True)
attach(cube®, bbox, .5, 1, .5, .5, 1, .5)
squeeze(cubel, bbox, cube@, bot, .3, .5)
translate(cubel, X, 2, .5)

Execution Semantics

cube3 = Cuboid(.2, .2, .4, True)

Execution Semantics

Semantics of attach

bbox = Cuboid(.7, 1.8, .6, True)
cube0 = Cuboid(.6, .6, .6, True) (1) attach(cubeO, bbox, .5, 0, .5, .5, 0, .5)

ubel = Cuboid(.6, .2, .6, True (2) attach(cubel, cubeO, .5, 0, .5, .5, 1, .5)
(3) squeeze(cube2, bbox, cubel, top, .5, .18)

cube3 = Cuboid(.2, .2, .4, True)

Side view

Execution Semantics

bbox = Cuboid(.7, 1.8, .6, True)
cube0 = Cuboid(.6, .6, .6, True)
ubel = Cuboid(.6, .2, .6, True

(1) attach(cubeO, bbox, .5, 0, .5, .5, 0, .5)

(2) attach(cubel, cubeO, .5, 0, .5, .5, 1, .5)
(3) squeeze(cube2, bbox, cubel, top, .5, .18)
cube3 = Cuboid(.2, .2, .4, True)

(4) attach(cube3, cube2, .5, .5, 0, .1, .1, 1)
(5) attach(cube3, cubel, .5, 0, .5, .1, 1, .7)

bbox = Cuboid(.7, 1.8, .6, True)
cube0 = Cuboi(.6, .6, .6, True)
cubel = Cuboid(.6, .2, .6, Tr

cube3 = Cuboid(.2, .2, .

(6) reflect(cube3, X)

Execution Semantics

(1) attach(cubeO, bbox, .5, 0, .5, .5, 0, .5)
(2) attach(cubel, cubeO, .5, 0, .5, .5, 1, .5)
(3) squeeze(cube2, bbox, cubel, top, .5, .18)

(4) attach(cube3, cube2, .5, .5, 0, .1, .1, 1)
(5) attach(cube3, cubel, .5, 0

(6) reflect(cube3, X)

Execution Semantics

(1) attach(cubeO, bbox, .5, 0, .5, .5, 0, .5)
(2) attach(cubel, cubeO, .5, 0, .5, .5, 1, .5)
(3) squeeze(cube2, bbox, cubel, top, .5, .18)

(4) attach(cube3, cube2, .5, 5,0, .1, .1, 1)
(5) attach(cube3, cubel, .5, 0, .5, .1, 1, .7)

Macros:
squeeze, reflect, translate

expand into multiple Cuboid +
attach statements

Execution Semantics

Differentiable execution:

Output geometry is

S differentiable with respect to
continuous parameters of input
program

(6) reflect(cubes, X) (4) attach(cube3, cube2, .5, .5, 0, .1, .1, 1)

(5) attach(cube3, cubel, .5, 0, .5, .1, 1, .7)

A Neurosymbolic 3D Modeling Pipeline

ShapeAssembly DSL
(Section 4)

Start— BBlock; CBlock; ABlock; SBlock;

BBlock — bbox = Cuboid(l, h, w, True)

CBlock — ¢,, = Cuboid(l, w, h, a) ; CBlock | None
ABlock — Attach ; ABlock | Squeeze ; ABlock | None
SBlock — Reflect ; SBlock | Translate ; SBlock | None
Attach— attach(cp,, cn, X1, Y1, 21, X2, Y2, 22)

Squeeze — squeeze(cp,, Cnys Cny, [U, V)

Reflect— reflect(c,,, axis)

Translate — translate(cp,, axis, m, d)

f — right | left | top | bot | front | back

axis— X | Y| Z

LhweR3

x,y,z,u,0,d € [0,1]%

a € [True,False]

n,meZ*

A Neurosymbolic 3D Modeling Pipeline

Shapes to Training Programs
(Section 5)

def Chair():
bbox = Cuboid(.7, 1.7, .5, True)
prog1 = Program1(.7, .6, .5, True)
prog2 = Program2(.7, .9, .05, True)
cube2 = Cuboid(.7, .15, .5, True)
attach(prog1, bbox, .5, 0, .5, .5, 0, .5)
attach(cube2, prog1, .5, 0, .5, .5, 1, .5)
squeeze(Prog2, bbox, cube2, top, .5, .1)

def Program1(l, w, h, aligned):
bbox = Cuboid(.7, .6, .5, True)
prog3 = Program3(.05, .6, .5, True)
squeeze(prog3, bbox, bbox, top, 0, .5)
reflect(prog3, X)

Extracting Programs from Shapes

“Chair back”

“Chair back side bars”

“Chair back center slats”

Local region of an
input hierarchical
part graph

Extracting Programs from Shapes

Locally flattening
the hierarchy to

make interacting
leaf parts siblings

Extracting Programs from Shapes

Shortening leaf
parts that intersect
other leaf parts

Extracting Programs from Shapes

Locating
attachment points
between parts

Extracting Programs from Shapes

Forming leaf parts
into symmetry
groups

Extracting Programs from Shapes

Ordering Attachments

 Due to imperative semantics,
attach order matters

e Heuristics to prune possible
orders, then check which one

prod Uces OU tput that best : : : : A_fterdifferent attachs?q;e;cezs — e
fits the shape

Before

e \
T RN
\ |\ i\ \

\“\;\ “"““ “‘\

A Neurosymbolic 3D Modeling Pipeline

Shapes to Training Programs
(Section 5)

def Chair():
bbox = Cuboid(.7, 1.7, .5, True)
prog1 = Program1(.7, .6, .5, True)
prog2 = Program2(.7, .9, .05, True)
cube2 = Cuboid(.7, .15, .5, True)
attach(prog1, bbox, .5, 0, .5, .5, 0, .5)
attach(cube2, prog1, .5, 0, .5, .5, 1, .5)
squeeze(Prog2, bbox, cube2, top, .5, .1)

def Program1(l, w, h, aligned):
bbox = Cuboid(.7, .6, .5, True)
prog3 = Program3(.05, .6, .5, True)
squeeze(prog3, bbox, bbox, top, 0, .5)
reflect(prog3, X)

A Neurosymbolic 3D Modeling Pipeline

Learning to Generate Programs
(Section 6)

Encoder Decoder

; P ; i
GRU | Line Decoder 7

GRU | Line Decoder l
! :

def Chair(): def Chair(): def Chair():

'

| |
Z I =l [

> A : “:_ss ol : ? i I

Line Decoder
Line Decoder

fiine
/

GRU —+»

| —
O
O
)
O
O
0O

Encoder

GRU =« Jiine

Learning to Write ShapeAssembly Programs

Line Decoder

—
)
S
Q
o
)
-
)
=
—

1
1
1
1
1
1
1
1
1
L}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
L}
1
1
1
1

Decoder

to Write ShapeAssembly Programs

Encoder

Learn

attach(Xyzy, XVZz|)

Line Decoder

WHAT CAN YOU DO WITH IT?

Novel Shape Generation

Novel Shape Generation

[0])

)
O
—
3
=
@

O
W
o
qv

=

7

[
>
o

Z

Editing Generated Programs

V)
=
O
—
@)
O
—
al
e,
Q
)
O
—
)
-
L
O
®)
C
-
5
LLl

JUBLIBA

Comparison Conditions

« 3D PRNN:
Sequence of boxes, but no hierarchy or relations

« StructureNet:
Hierarchy of boxes w/ symmetry relations, but no explicit
parametric attachments

StructureNet

Vs
Q
Q
O
e
W
Q
>
O
Z
—
Q
L)
LJ
O
an
Tp)
Q
LJ
O
—
Q
C
Q
O
Y2
—
3
@,

Ours Generates Better Novel Shapes

StructureNet

Ours Generates Better Novel Shapes

StructureNet

Ours are also quantifiably more compact, physically stable, and
distributionally similar to a held-out validation set

Ours Produces Better Interpolation

b ¥

Our interpolations are quantifiably smoother,

Source Shape Interpolations ———MmmM —— Target Shape

StructureNet

in terms of both structure and geometry

StructureNet

Point Cloud “Parsing”

Input Points

Parsing”

[}

d

>
A
O
LJ
A=

o
o

[22]
=
o
2
=
Q
—
o
@)
+
Z
n

Input Points

Ours + Opt Program

n
Ours + Opt Cuboids

Parsing

[}

[22]
=
)
2
3
Q
—
o
O
+
Z
7

d

>
A
O
LJ
A=

o
o

Input Points

WHAT'S NEXT?

Neurosymbolic 3D Model Design Space

Neurosymbolic 3D Model Design Space

THANKS!

