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3D Point Cloud Data %M

» Unstructured set of 3D point samples

» Each point consists of geometry information (x, y, z) and optional attributes ,
e.g., color (7, g, b) and normal (n,,n,,n,)
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Up-sampling over 3D Point Clouds %M

- Given a sparse point cloud with N points, generate a dense point=—" "~
cloud with M points (M > N) via a typical computational method to
represent objects/scenes.

» 1t Is costly and time-consuming to obtain such highly detailed data from
hardware.

» High resolution point clouds are beneficial to subsequent applications, e.g.
surface reconstruction, object detection.
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Point Cloud Up-sampling vs. Image Up-sampling
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« 3D geometry information * [llumination (color) information

 Irregular and unordered (non- « Regular structure (Euclidean
Euclidean space) ~ space)

 How to design feature/point ~+ Deconvolution/transposed layer
expansion? ~ to expand features




Down-sampling over 3D Point Clouds | m

Hong Kong

 Given a point cloud with n points, generate a sparse point cloud®with
m points (m < n) distributed in the same space to represent the
original object/scene.

» Reduce information redundancy, thus more efficient running time, saving
storage space and transmission bandwidth.
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Down-sampling over 3D Point Clouds
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 Our goal: task-oriented point cloud down-sampling, i.e., the dowh=""""
sampled sparse point clouds will maintain the task performance as

much as possible.
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Related Works

* Deep learning-based up-sampling methods: PU-Net
» Expand features using separated neural network branches.

Patch Extraction

Point Feature Embedding

Feature Expansion

Coordinate Reconstruction

v

(N,3)

hierarchical feature learning
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l l interpolation l

multi-level feature aggregation

Joint Loss I

reconstruction loss repulsion loss
*: ground truth @ : predicted point

L. Yu, et al., PU-Net: Point Cloud Upsampling Network, /n Proc. CVP,
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Related Works oean

 Deep learning-based up-sampling methods: EC-Net

»Based on PU-Net, restoring sharp features with additional edge and surface
annotations

»Require additional annotations for edges and surfaces, which are costly and
Infeasible for data with complex geometry

Network Architecture Joint Loss Function
D int-to- edge distance
‘ feature feature £ [ pg!”tt to edge (——mmmmmm——————————— ge al I
embedding l is ar;ces regression loss |
edge distance
‘ feature ] —r‘ & ‘ edge points  [e==== edge loss
: . regression
expansion J T J
\( *
_ l coordinate edge points
( > . — . r==  surface loss
/ \ . regression . identification : )
NG expanded . Y S
----- feature f :
h residual ~» < —> output patches 4--{-- repulsion loss
mput piatc es - Dz eoordinates T putp p |

L. Yu, et al. EC-Net: an edge-aware point set consolidation netwoWM&/ 8



Related Works

* Deep learning-based up-sampling methods: MPU
» A cascade structure that progressively up-samples the input 2x at each level.
»Append +1/-1 to feature to separate features
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Feature Interpolation Feature Interpolation

; Feature Feature Feature Feature Feature Feature ;
= — . R —- — . — [ ] _—' —‘_—" —- . . —- — . —- LI _-' —‘_—' — . . —- — . —- L N ] _."
Extraction Expansion : Extraction Expansion D Extraction Expansion i

Level /-1 Level /+1

NxC INX(C+1)
NxC  2NxC  2Nx(C+l)
Feature Expansion Unit

Y. Wang, et al. Patch-based progressive 3d point set upsampling, /n



Related Works

* Deep learning-based up-sampling methods: PU-GAN

» Introduce an additional discriminator (GAN structure) to improve the
generator’s performance.

» Extend the 1D code assign in MPU to the 2D code assign for feature
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expansion.
— Generator N
Per-point feature F Up-down-up F Coordinate Farthest
extraction unit expansion unit P  reconstruction | sampling
Nx3 ONXC
Input patch (r+2)NxC(C' N X 3
Feature Extraction Feature Expansion Point Set Generation
— Discriminator \
MLPs fImax e ~ MLPs ifiax
pool quplicate ) pool o
rN times e —— layers confidence =
shared ‘ : unit shared ! value
1x Cd \ 1x Cd
rN X 3 rN X Cy concatenate N X 2Cy4 rN X 2Cy TN X Cy
\ J

R. Li, et al., Pu-gan: a point cloud upsampling adversarial networWO;/ 10



Related Works %M

» Classic down-sampling methods
»Random sampling (RS)
» Farthest point sampling (FPS)
» Poisson disk sampling (PDS)

» The down-sampled point cloud is a subset of the dense one, which can
preserve geometry well to some extent but are completely independent of
downstream applications. Thus, the down-sampled point clouds may degrade
the performance of the subsequent applications severely.
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Related Works %M

* Deep learning-based down-sampling methods: S-Net
» Task-oriented point cloud down-sampling supervised by a joint loss.

» Trivially generate sparse points directly from the global feature
without sufficient consideration of the local structure.

Training
| " Sampling
... ° —» loss
G- - e — \
%% o o —_ — Simplify
° e ° Fixed Joint objective
Inference
1 | MLP | | Pool [ FC ] '
: ... ~: .t. « ° : Evaluation
®_0 . |
- 35, — - - — S
e © o © | e
eoe® e X ) o & Fixed -

Proposed sampling

O. Dovrat, et al. “Learning to sample.” In Proc. CVPR, 2019 25




Related Works %M

» Deep learning-based down-sampling methods: Sample-Net

» Extension of S-Net, introduce an additional post-processing module (soft
projection) to deal with non-differentiable sampling operation in S-Net.

» Still suffer from the drawback of S-Net, i.e. the ignorance of the spatial

correlation
SampleNet
' --------------- ~
1 ( 1 \
I ([ — Slmpllfy CE’}., :
: Z
PHX3 L MLP | | Pool _)me?a—) s Rmx3_) Task
g1 1
|
v \_ = 1
S .J - | ?
[ P S A S
- Simplification Loss : - Projecti - Task Loss

------------------

O. Dovrat, et al. “SampleNet: Differentiable Point Cloud SamplWOZO 25




Proposed Up-sampling Method: PUGeo-Net Im
%%tﬁiﬁik%
 PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Up-=

sampling

City University of Hong Kong

»Geometry-centric, link differential geometry and deep learning elegantly.
Provide quantitative verification to confirm the interpretation.

» Jointly generate coordinates and normal, which will be beneficial to
downstream applications, e.g. surface reconstruction and shape analysis.

» Outperform state-of-the-art methods for all metrics.
»Robust to noisy and non-uniform input, e.g. real scanned LIDAR data.
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Proposed Up-sampling Method: PUGeo-Net %M

» Theoretical foundation of PUGeo-Net

» The Fundamental Theorem of the Local Theory of Surfaces states the local
neighborhood of a point on a regular surface can be completely determined
by the first and second fundamental forms, unique up to rigid motion

1

(0,0)

w0

Fig. 2: Surface parameterization and local shape approximation. The local neighborhood of x; is
parameterized to a 2D rectangular domain via a differentiable map ® : R®* — R>. The Jacobian %
matrix J& (0, 0) provides the best linearjapproximation of ® at x;, which maps (u, v) toapoint X =

on the tangent plane of x;. Furthermore, using the principal curvatures of x;, we can reconstruct

the local geometry of x; in the second-order accuracy.
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Proposed Up-sampling Method: PUGeo-Net

* Flowchart of PUGeo-Net
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Proposed Up-sampling Method: PUGeo-Net
cuflzztfites

replicate
add

replicate
Feature Feature |Parameterization—based
4|> NxF AI ~|_; NxF - X X _ add
Nx3 Extraction X Recalibration X Point Expansion RNx3

Input patch
r Coarse
Nx3 .
|:|:| normals
replicate

* Hierarchical feature embedding module
» Extract features from low- to high-levels. We adopt the standard DGCNN to

concats] DX Local Shape X
(3+F) Approximation e RN Refined
e __x - normals

realize this module.
 Feature recalibration

» Self-gating attention to enhance multi-scale features
v'concatenate features of all L layers: ¢; = Concat(c!,--- ,ck) ‘
E—;:Em E ?:r‘; ——[[;H—muhiply- E LzE :: :

v utilize an MLP to obtain logits: ai = h»(&:)
Extracted [ h | O
features

v’ obtain recalibration weights: wl=c*/> e multleve
features
2.¢2 ... al el

v'recalibrate multi-scale features: , — Céﬁéat(w; el w
38.5 019) 1-12. 17

Y. Wang, et al. "Dynamic graph cnn for learning on point clouds."



Proposed Up-sampling Method: PUGeo-Net

ERETH AR

City University of Hong Kong

— Dense
RNx 3 coordinates

replicate
replicate
Feature Feature I |Parameterization—based RN x
L o NxF |—» — | NxF . . add—| |- concat-=
Nx3 Extraction Recalibration I Point Expansion RNx3 (3+F)
Input patch

Local Shape
Approximation

add
RNx1
- Refined
add—- normals

« Parameterization-based point expansion

» The input points are expended R times, leading to a coarse dense point cloud

as well as coarse normal.
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Proposed Up-sampling Method: PUGeo-Net %M
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' Dense
replicate
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RNx1
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Input patch normals

* Local shape approximation

» The points located on the tangent plane are wrapped to the curved space.
Based on the 2" order approximation, the warping should be along the
normal direction with a displacement.

v’ predict the displacement  §7 = f;(Concat(X", c;))

v update dense points  x! = (z7,y’, 2T = X7 + T, - (0,0,67)T

v predict normal offset ~ 4An; = f4 (Concat(x}, c;))

v'update dense normal n; = An; + n; 19




Proposed Up-sampling Method: PUGeo-Net %M

« Joint training loss for PUGeo-Net

Ltotal — aLCD - BLcoa?"se =+ WL?“efined

» L-p measures the distance between the up-sampled point cloud Xz and the
corresponding ground-truth one Yr = {y:}i{ via Chamfer Distance (CD):

LCD—R—M ( SO = o=+ > lye— yk)|2),

x"eXp YLEVrR

> L.oqrse Measures the error between the predicted coarse normal N = {1},
and the ground-truth one N/ :

M

Lcoarse(Na-[\v/—) — ZL(nig ﬁz) L(ni? ﬁ”&) - maX{”ni o ﬁl“%a ||nl + ﬁ'&H%}

> L,erineq Measures the error between the predicted dense normal Vg = {m:};2
and the ground-truth one Np:

'r"efzned NR:NR ZZL nzant,’b T"))

1=1 r=1




Proposed Up-sampling Method: PUGeo-Net

* Experiments

» Quantitative comparisons with SOTA methods
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CD: Chamfer distance. HD: Hausdorff distance. P2F: Point-to-surface distance. JSD: Jensen-Shannon divergence

R | Method |[|[Network| CD HD  JSD P2Fmean P2Fstd| CD# HD# JSD#
size |(1072)(1072)(1072) (1073) (1073)| (10™2) (1072)(10™?)
4% | EAR [23] - 0919 5414 4.047 3672 5592 | 1.022 6.753 7.445
PU-Net [24][10.1 MB| 0.658 1.003 0950 1.532 1215 | 0.648 5.850 4.264
MPU [26] [|92.5 MB| 0.573 1.073 0.614 0.808 0.809 | 0.647 5.493 4.259
PUGeo-Net ||26.6 MB| 0.558 0.934 0.444 0.617 0.714 | 0.639 5471 3.928
8X | EAR [23] _ _ - - _ - _ - _
PU-Net [24]||149 MB| 0.549 1314 1.087 1.822 1427 | 0594 5770 3.847
MPU [26] ||92.5 MB| 0.447 1222 0511 0956 0972 | 0.593 5.723 3.754
PUGeo-Net ||26.6 MB| 0.419 0.998 0354 0.647 0.752 | 0.549 5232 3.465
12x | EAR [23] _ _ - - _ - _ - _
PU-Net [24][19.7 MB| 0.434 0960 0.663 1.298 1.139 | 0.573 6.056 3.811
MPU [26] - - - - - - - - -
PUGeo-Net ||26.7 MB| 0.362 0.978 0.325 0.663 0.744 | 0.533 5255 3.322 /
16x | EAR [23] _ _ _ _ _ _ _ _ _ =
PU-Net [24]|[24.5MB| 0.482 1.457 1.165 2.092 1.659 | 0.588  6.330 3.744 /
MPU [26] ||92.5 MB| 0.344 1355 0478 0926 1.029 | 0.573 5923 3.630
PUGeo-Net ||26.7 MB| 0.323 1.011 0.357 0.694 0808 | 0.524 5267 3.279

CD;E , HD;E , JSD;;

: these 3 metrics are used to measure the distance between dense point clouds
sampled from reconstructed surfaces and ground truth meshes.
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Proposed Up-sampling Method: PUGeo-Net

* Experiments
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»Visual comparisons with SOTA methods
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Proposed Up-sampling Method: PUGeo-Net

« Experiments: Robustness validation

»Noisy and non-uniform data
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Proposed Up-sampling Method: PUGeo-Net %M

° Experlments RObUStneSS Valldatlon City University of Hong Kong
» Scanned data by LIDAR

(b) Van 16x upsample

CIDAR poomelng Suen (RITEY (c) Pedestrians 16x upsample (d) Pedestrians 16x upsample




Proposed Up-sampling Method: PUGeo-Net

* Experiments
» Ablation studies

ERETH AR
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Table 3: Ablation study. Feature recalibration: concatenate multiscale feature directly without
the recalibration module. Normal prediction: only regress coordinates of points without normal
prediction and supervision. Learned adaptive 2D sampling: use a predefined 2D regular grid
as the parametric domain instead of the learned adaptive 2D smapling. Linear transformation:
regress coordinates and normals by non-linear MLPs directly without prediction of the linear
transformation. Coarse to fine: directly regress coordinates and normals without the intermediate
coarse prediction.

Networks CD HD JSD P2F mean P2F std | CD HD JSD
Feature recalibration|| 0.325 1.016 0371 0.725 0.802 | 0.542 5.654 3.425
Normal prediction|| 0.331 2.232 0427 0.785 0973 | 0.563 5.884 3.565
Learned adaptive 2D sampling || 0.326 1.374 0.407 0.701 0.811 | 0.552 5.758 3.456
Linear transformation|| 0.394 1.005 1.627 0.719 0.720 | 1.855 11.479 9.841
Coarse to fine|| 0.330 1.087 0431 0.746 0.748 | 0.534 5.241 3.348
Full model || 0.323 1.011 0357 0.694 (0808 | 0.524 5.267 3.279

l/ / ”




Proposed Up-sampling Method: PUGeo-Net

« Experiments: validation of our method’s properties
» Comparison of the distribution of generated points by different methods
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Input ~ PUNet  MPU  PUGeo-Net

> Geometry-centric nature

2.1% 2.1%
4.1% 4.1% 7
o 17% § 1.7%
[
+— o -~ 1.3%
c27 1.3% e 2.7%
v 0.9% [v] 0.9% =2
a‘, 1.4% a 1.4 ! ’
o 0.4% o 0.4%
0.0 < 0.0% — . 0.0% - b 0.0% (a5 —n
0 5 10 15 20 0,002 -0.001 0.000 0.001 0.002 \ 0 5 10 15 20 0.002 -0.001 0.000 0.001 0.002
Angle(ts, t;xt;) Normal displacement 6 Angle(t;, t xt;) Normal displacement 6

Fig. 10: Statistical analysis of the predicted transformation matrix T = [t1;t2; t3] € R**® and

normal displacement 4, which can be used to fully reconstruct the local geometry
o >



Proposed Down-sampling Method %M
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 Problem formulation from the perspective of matrix optimizatiof™
> Input point cloud 7 = {p; € B>}, , down-sampled one Q = {q; € R’}

QO Liask(Q) sit. QC P /nnn\
(oJo]o]
_ x( B 0000
min Laok(Q) il g X aLon
A
st.Q=PS,1]S=1 S'S=1,, s;; € {0,1} B B o]l
1
1 0 anan,
n x4
min Ltask(Q) + aLdist (Pa Q) . - S
S Illustration of the formulation of the down-
st.Q=PS,8>0,1'S=1! [STS—L,|r <e, sampling problem with matrix multiplication

mSin Liasi (@71 (®(Q))) + aLgis: (P, 2 H(2(Q))), ®(-) is feature mapping functi
st. ®(Q)=®(P)S, S>0,1'S=1],|ISTS —1I,.|[r <e,

1) is its inverse.

27



Proposed Down-sampling Method: MOPS-Net %M
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« MOPS-Net: a matrix optimization-driven network
» Flowchart

matrix

1)) + aLas(P, 27 (2(Q))),
,S>0,1'S=1"|IS'S-L,||r <e,

P
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Proposed Down-sampling Method: MOPS-Net %M

City University of Hong Kong

« MOPS-Net: a matrix optimization-driven network
» Flowchart

MOPS-Net
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Proposed Down-sampling Method: MOPS-Net %M

« MOPS-Net: a matrix optimization-driven network
» Flowchart

MOPS-Net

(- differential sampling \

matrix S
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Proposed Down-sampling Method: MOPS-Net %M
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« MOPS-Net: a matrix optimization-driven network
» Flowchart

- —1
mslll Ltaskz (I)(Q))) + aLdist (P:
st. ®(Q)=®(P)S,S>0,1'S=1" |S'S-L,||r <e,

g _ L :



Proposed Down-sampling Method: MOPS-Net %M

=

« MOPS-Net: a matrix optimization-driven network
» Flowchart

MOPS-Net

(_ differential sampling \\
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Proposed Down-sampling Method: MOPS-Net %M
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« MOPS-Net: a matrix optimization-driven network
» Flowchart

st. ®(Q)=®(P)S,S>0,1'S=1" |S'S—1,|r <e,

A :




Proposed Down-sampling Method: MOPS-Net %M
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« Joint training loss for MOPS-Net
Ltofa.i (;Dﬂ Q) — Lta;sﬁf.:(Q) + ﬂLdist(;D: Q)

» L:,s. Measures the subsequent task error for down-sampled point clouds <.

» Lg;s; regularizes the network to learn down-sampled point clouds that are
close to the input.

Ldmt(Pe Q) — Le:ub&:et(Pa Q) + .ﬁLcoﬂerage (P. Q)

v Loupser CONStrains Q close to subset of input.

Leupeet (P, Q) = 37 3 migllas P+, spax mig a3

PEP =1,..., npe
=1,....,m

v Leoverage €NCOUrages Q preserve the overall shapes of input.

LLGLET‘&Q‘L (P Q Z 111111 sz qHQ

-----

34




Proposed Down-sampling Method: MOPS-Net %M
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« Extension: Flexible MOPS-Net for arbitrary ratios

differentia | ampling S, formed b sum of sum of
matrix_S ormec by top 7 sampling loss task loss

MLP
- 4ar-co-g {. l |} : 1
n.n sampled points with arbitrary .
’ Xy X, X, task
ES-os -2

(n. d)L. - ﬁ — {. } 7 (m,.3)(m,.3) (m.3)

(n.d) dxn dxmy, dxm, dxm,
high-dim features &(P) sampled featur es D(Q)
» A single network to down-sample with arbitrary sampling ratios after only one-

time training.
»Instead of learning a rectangular sampling matrix, we learn a square matrix

S e R™" | the left-most columns are selected to form sampling matrixs € rR*»*™
to produce m points.

» Trained by multi-level loss function
jLsum (P: {th }) — Z AiLtotaE (P Qmi; Smt)

¥

35




Proposed Down-sampling Method: MOPS-Net

* Experiments
» Classification-driven down-sampling
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TABLE 1: Comparisons of the classification accuracy by different downsampling methods. The larger, the better. Note the
classification accuracy of original point clouds with 1024 points each is 0.892 when using the same classification network.

m RS FPS S-Net S-Net-M MOPS-Net MOPS-Net-M FMOPS-Net FMOPS-Net-M
512 0.878 0.879 0.857 0.882 0.883 0.883 0.876 0.883
256 0.797 0.846 0.860 0.847 0.874 0.867 0.872 0.862

128 0.607 0.760 0.852 0.793 0.872 0.850 0.859 0.833

64 0.348 0.564 0.855 0.708 0.871 0.810 0.844 0.761

32 0.154 0.289 0.854 0.610 0.861 0.776 0.741 0.524

16 0.061 0.149 0.794 0.349 0.847 0.512 0.576 0.236

TABLE 2: Comparisons of classification accuracy of dif-
ferent downsampling methods when the classification net-

work was trained with downsampled point clouds by each L & . & T ;o3
lnet11o d‘ Label: Piano Classified into: Stairs  Classified into: Stairs  Classified into: Stairs  Classified into: Piano
- |
m RS FPS S-Net-M  |[MOPS-Net-M
512 0.869 0.886 0.885 0.886 wE
256 0.873 0.883 0.881 0.883
]' 28 O' 663 0' 8?5 0' b74 0' bbB Label: Toilet Classified into: Chair  Classified into: Chair  Classified into: Chair  Classified into: Toilet
64 0.827 0.863 0.865 0.879 (a) (b) (<) (d) (e)
32 0.764 0.8—11 0.864 0.879 Fig. 4: Visual comparisons of sampled point clouds by different downsampling methods with m = 64 as well as the
- i 5 . lassification results. (a) The original den int clouds (1024 points); (b) Random sampling results; (c) FPS results; (d)
]-6 0' 668 0'812 0' '544 0' 673 ;i::iltsc ?)f (;?N::l;blsue)aand eS-(;\It;gt-rlthl (reed)fearr\’g (e) (i{(:slulsts of MglO’S-IiIet (blu:) ar(l)d I\/S[aOPg-Ngt-ls/?lzresd).cThe cla‘sessil;ic?ition

results of (d) and (e) are those of S-N_et—M and MOPS—_Net-M.
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TABLE 4: Comparisons of the normalized reconstruction error (NRE) of different downsampling methods. The smaller, the
better.

m RS FPS S-Net S-Net-M MOPS-Net MOPS-Net-M  FMOPS-Net-M
1024 1.013 1.000 1.090 1.000 1.030 1.000 1.005
512 1.096 1.014 1.084 1.018 1.096 1.019 1.068
256 1.340 1.084 1.124 1.086 1.055 1.061 1.128
128 2.226 1.330 1.172 1.207 1.059 1.101 1.276
64 4.089 2.030 1.419 1.535 1.140 1.270 1.541
32 7.702 3.767 2,677 2.867 2.182 2457 2.136

“+ Visual comparisons of the reconstructed point clouds
"+ ", by different downsampling methods with m = 64. The
. top row shows the sampled points (colored points) by
different methods. The bottom row shows the

reconstructed point clouds by different methad

NRE: 1.00 NRE: 28.06 NRE: 1.53 NRE: 1.91 NRE: 1.09 by S-Ne

(a) (b) (c) (d) (e) o
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»The joint loss 23
TABLE 6: Classification accuracy of MOPS-Net and MOPS- g a '(') =
Net-M when MOPS-Net was trained with different settings

.. o — Fig. 7: Visual illustrations of the sampled points by MOPS-
of det( ’ ) Here, m = (4. Net when trained with different settings of Lg;s;. m = 64.
Setting of Lgist MOPS-Net MOPS-Net-M (a) The origin point cloud with 1024 points; (b) The sam-
Lgist = Lsubset 0.883 0.457 pled points by MOPS-Net when Lg;st = Lgsupset; (c) The
Lgist = Leoverage 0.881 0.652 sampled points by MOPS-Net when Lgist = Lecoverages
Ld" i = Loubset ‘+ BLcoverage 0.871 0.810 and (d) The sampled points by MOPS-Net when Lg;s¢ =
- — - . . Lsubset 4+ BLcoverage-
» Appearance of he learned matrix § > Validation of the inverse mapping function
1 [ | o] 60
"m=16 T m=32 m=64 | _
. - " . round tru enerate rnun ru | enera e
Fig. 8: Visual illustrations of the learned STS by MOPS-Net Fromdinuh ot Senerseditat crondiruniGed - Genermediond
under various sample sizes. Fig. 10: Experimental verification that the learned function

6(-) is an approximation of ¢~!(-) in MOPS-Net.
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« We proposed the first geometry-centric deep neural network for 3Bpoint”
cloud up-sampling, which is essentially different from the existing
methods which are largely motivated by image super-resolution
techniques.

* We presented MOPS-Net, a novel end-to-end deep learning framework for
task-oriented point cloud down-sampling. In contrast to the existing
methods, we designed MOPS-Net from the perspective of matrix
optimization.

« Extensive experiments demonstrate the significant superiority of our
methods over state-of-the-art approaches.

« Our methods not only brings new perspectives to the well-studied problem,
but also links discrete differential geometry, matrix optimization, and dee
learning in a more elegant way. we believe they has the potentia
wide range 3D processing tasks.




