

SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

Yifei Shi, Junwen Huang, Hongjia Zhang, Xin Xu, Szymon Rusinkiewicz and Kai Xu

National University of Defense Technology

Princeton University

• Symmetry is omnipresent in both nature and the synthetic world

- Purely geometric symmetry detection approach
- Based on symmetry correspondences (counterparts) detection

transformation space

[Ecins et al. 2018]

[Mitra et al. 2006]

- Detect object symmetries from a single-view RGB-D image
 - Partial observation (self-occlusion)
 - Mutual occlusion
 - ➤ Noise
- No sufficient symmetry correspondence
- Learning-based approach?

- Naïve learning-based approach
 - > Training: memorize the symmetry axes of the category
 - > Testing: perform *object classification* & *pose estimation*

- Symmetry is supported by local geometric cues
 - Find local correspondence
 - Aggregate and output symmetry
- The searching of local shape correspondence benefits from the global feature

Our approach

- Multi-task learning: predict not only the *symmetry axis (global)*, but also the *symmetry correspondences (local)*
- Could detect *multiple symmetries*
- Could handle both *reflectional symmetry* and *rotational symmetry*
- End-to-end trainable

Related work

• 3D symmetry detection

Partial symmetry detection [Mitra et al. 2006]

Intrinsic symmetry detection [Xu et al. 2009]

Related work

• 3D symmetry detection

View-based symmetry detection [Li et al. 2004]

Slippage analysis [Gelfand et al. 2004] Geometric fitting [Ecins et al. 2018]

Problem setting

- Input: an RGB-D image of an 3D object
- Object segmentation is known
- **Output:** the extrinsic reflectional and rotational symmetries

• Symmetry prediction network

• Loss function

Dense point loss:
$$\mathcal{L} = \frac{1}{N} \sum_{i}^{N} \mathcal{L}_{i},$$

• Loss function of reflectional symmetry

roo

• Loss function of rotational symmetry

$$\mathcal{L}_{i}^{\text{rot_reg}} = d^{2}(O_{i}, \hat{O}_{i}) + \left|1 - |\mathbf{n}_{i}^{\text{rot}} \cdot \hat{\mathbf{n}}_{i}^{\text{rot}}|\right|,$$
$$\mathcal{L}_{i}^{\text{rot_cp}} = \frac{1}{N} \sum_{j}^{N} \mathcal{L}^{\text{cls}}(p_{ij}^{o}, \hat{p}_{ij}^{o})$$
$$\text{The probability of point } j \text{ being the counterparts of point } i$$

• Handle multiple symmetries

- Inference
- Step 1: Prediction aggregation (Density-Based Spatial Clustering)
- Step 2: Visibility-based verification

Benchmark

- We construct the 3D symmetry detection benchmark on ...
- ShapeNet (synthetic)

YCB	(real)

ScanNet (real)

Dataset	Subset	#View	#Object	#Scene
ShapeNet	Train Holdout view Holdout instance Holdout category	300 000 7 200 7 200 4 800	$\begin{array}{r} 30\ 000\\ 2\ 400\\ 2\ 400\\ 1\ 600 \end{array}$	- - -
YCB	Train	16 189	18	80
	Test	2 949	18	12
Train		13 126	1 642	400
ScanNet Holdout view		4 723	1 642	400
Holdout scene		1121	425	100

• Qualitative results

RGB-D image

• Qualitative results

RGB-D image

• Qualitative results

RGB-D image

• Qualitative results

- Compare to baselines
- Geometric Fitting [Ecins et al. 2018]
- ➢ RGB-D Retrieval [Yang et al. 2018]
- Shape Completion [Liu et al. 2020]
- Evaluation metric
- Precision-recall curve [Funk et al. 2017]

• Compare to baselines on ShapeNet

• Qualitative comparison

• Qualitative comparison

• Ablation study

• Sensitively to occlusion

• Sensitively to occlusion

• Visualization of the predicted counterparts

large error small error

• Runtime analysis

Dataset	Network train	Network inference	Aggregation	Verification
ShapeNet	64 h	50 ms	50 ms	40 ms
YCB	20 h	50 ms	50 ms	40 ms
ScanNet	26 h	50 ms	50 ms	40 ms

Failure cases

- Spherical symmetry
- Completely missing data

Applications

• 6D pose estimation

DenseFusion [Wang et al. 2019]

DenseFusion + Symmetry prediction

Applications

• Symmetry-based segmentation

Future work

- Hierarchical symmetries
- Self-supervised approach
- Integrate symmetry prediction into X

Thank you