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Background

Conventional computer graphics modeling and rendering pipeline

• Acquiring a detailed appearance and geometry model

• Global illumination rendering 

Image from [Cohen et al. 1999]
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Background

Photo-realistic rendering of real-world scenes using conventional computer 

graphics pipeline is difficult. 

The quality of existing reconstruction techniques is not good enough to support 

photo-realistic rendering, especially for the following challenging cases. 

Transparency Glassy Thin structures Digital Humans

Image from [Lombardi et al. 2019]
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Background

Image-based Rendering (IBR) = 3D model + image-based view interpolation

Limitations: 1) High storage requirements; 2) Limited control over results;                     

3) Scene-specific. 

Image from [Cohen et al. 1999]
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Background

What is neural rendering? (quote from [Tewari et al. 2020])

“Deep neural networks for image or video generation

that enable explicit or implicit control

of scene properties”
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Background

Neural Rendering has various applications

AR / VR Relighting

Free-viewpoint RenderingReenactment
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Background

Neural scene representations and neural rendering for free-viewpoint rendering 

– Scene representation: mapping every spatial location to a feature 

representation that describes local geometry and appearance information;

– Rendering:   synthesizing novel view images using the learnt representations 

with computer graphics methods.

Input Images Learned Scene Representation Synthesized Novel Views

Image from [Mildenhall et al., 2020]
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Related Works

Novel view synthesis with a coarse 3D geometry as input

Point cloud: 

Textured meshes: 

Image from [Meshry et al. 2019]

[Meshry et al. 2019],

[Martin Brualla et al. 2018], 

[Aliev et al. 2019], ...

Image from [Liu et al. 2020]

[Thies et al. 2019],

[Kim et al. 2018],

[Liu et al. 2019], 

[Liu et al. 2020], ... 
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NeRF [Mildenhall et al. 2020]SRN [Sitzmann et al. 2019b]

Implicit Fields  

Related Works

Novel view synthesis without any 3D input

Generative Query Networks 

[Eslami et al. 2018]

[Flynn et al., 2016; Zhou et al., 2018b; 

Mildenhall et al. 2019]

Multiplane Images (MPIs) 

Voxel Grids + Ray Marching 

Neural Volumes 

[Lombardi et al. 2019]

DeepVoxels 

[Sitzmann et al. 2019]

RenderNet[Nguyen-Phuoc et al. 2018]

Voxel Grids + CNN decoder 
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Related Works

3D spatial location 

f(p)
p

Local properties of p

MLPs 

NeRF [Mildenhall et al. 2020]SRN [Sitzmann et al. 2019b]

Implicit Fields  
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Related Works

p_0

v

NeRF [Mildenhall et al. 2020]SRN [Sitzmann et al. 2019b]

Implicit Fields  
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Neural Rendering with Implicit Fields

▪ Surface Rendering vs. Volume Rendering

Pros:   Fast Inference

Cons:  Poor synthesis quality (Hard to find 

the geometry surface accurately)

Results of SRN:Surface Rendering, e.g. SRN

Speed:    4 s / frame

Quality: 

● PSNR: 27.57

● SSIM:  0.908

● LPIPS: 0.134
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Neural Rendering with Implicit Fields

▪ Surface Rendering vs. Volume Rendering

Pros:   Good synthesis quality if the 

samples on the ray are dense enough. 

Cons:  Slow Inference

Speed:    100 s / frame

Quality: 

● PSNR: 30.29

● SSIM:  0.932

● LPIPS: 0.111

Results of NeRF:Volume Rendering, e.g. NeRF
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Neural Rendering with Implicit Fields

It is important to prevent sampling of points in empty space without relevant 

scene content as much as possible.

Bounding Volume Hierarchy Sparse Voxel Octree
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Our Results

Speed:    2.62 s / frame

v.s. 4s / frame (SRN)

v.s. 100s / frame (NeRF)

Quality: 

● PSNR: 33.58

● SSIM:  0.954

● LPIPS: 0.098
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Our Results

Speed:    2.62 s / frame

v.s. 4s / frame (SRN)

v.s. 100s / frame (NeRF)

Quality: 

● PSNR: 33.58

● SSIM:  0.954

● LPIPS: 0.098
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Our Results

▪ Multi-object Training for Scene Editing and Scene Composition
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Our Method (NSVF)

Scene Representation - Neural Sparse Voxel Fields (NSVF): a hybrid neural representation 

for fast and high-quality free-viewpoint rendering.

Volume Rendering with NSVF

Progressive Learning:  we learn NSVF with the differentiable volume rendering operation 

from a set of posed 2D images progressively
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Scene Representation - NSVF

The relevant non-empty parts of a scene are contained within a set of sparse 

bounding voxels :

The scene is modeled as a set of voxel-bounded implicit functions: 

ray directionspatial location
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Scene Representation - NSVF

A voxel-bounded implicit field

▪ For a given point p inside voxel Vi, the voxel-bounded implicit field is defined as:

▪ Voxel embedding is defined as:

Trilinear interpolation

Post-processing (e.g. Fourier features)

Voxel features (e.g. learnable voxel embeddings)

voxel embedding ray direction color density
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Volume Rendering with NSVF

Rendering NSVF is efficient as it prevents sampling points in the empty space 

▪ Ray-voxel Intersection

▪ Ray-marching inside voxels
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Volume Rendering with NSVF

Ray-voxel Intersection

▪ Apply Axis Aligned Bounding Box (AABB) intersection test [Haines, 1989] for 

each ray.

▪ AABB is very efficient for NSVF.  It can process millions of ray-voxel 

intersections in real time. 
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Volume Rendering with NSVF

Ray Marching inside Voxels

▪ Uniformly sample points along the ray inside each intersected voxel, and

evaluate NSVF to get the color and density of each sampled point. 
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Volume Rendering with NSVF

Comparison of Different Sampling Methods

(a) Uniform sampling 

in the whole space 

(b) Importance sampling 

based on (a)’s result

(c) Sampling with 

sparse voxels
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Volume Rendering with NSVF

▪ Rendering Algorithm
▪ Early Termination

– Avoid taking unnecessary 

accumulation steps behind the surface;

– Stop evaluating points earlier when the 

accumulated transparency A drops 

below a certain threshold ε.
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Progressive Learning

▪ Since our rendering process is differentiable, the model can be trained end-

to-end with 2D posed images as input: 

Beta-distribution regularization for transparency.
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Progressive Learning

A progressive training strategy to learn NSVF from coarse to fine 

▪ Voxel Initialization

▪ Self-Pruning

▪ Progressive Training

Illustration of self-pruning and progressive training
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Progressive Learning

Voxel Initialization

▪ The initial bounding box roughly encloses the whole scene with sufficient 

margin. We subdivide the bounding box into ~1000 voxels. 

▪ If a coarse geometry is available, the initial voxels can also be initialized by 

voxelizing the coarse geometry.
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Progressive Learning

▪ We can improve rendering efficiency by pruning “empty” voxels.

– Determine whether a voxel is empty or not by checking the maximum 

predicted density from sampled points inside the voxel.  

– Since this pruning process does not rely on other processing modules or 

input cues, we call it  “self-pruning”.

Self-Pruning

density
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Progressive Learning

Progressive Training

▪ Self-pruning enables us to progressively allocate our resources

▪ Progressive training:

– Halve the size of voxels → Split each voxel into 8 sub-voxels

– Halve the size of ray marching steps

– The feature representations of the new vertices are initialized via trilinear 

interpolation of feature representations at the original eight voxel vertices. 

Illustration of self-pruning and progressive training
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Experimental Settings

▪ Datasets

– Synthetic-NeRF

– Synthetic-NSVF

– BlendedMVS

– Tanks & Temple

– ScanNet

– Maria Sequence

▪ Baselines

– Scene Representation Networks (SRN) [Sitzmann et al. 2019]

– Neural Volumes (NV) [Lombardi et al. 2019]

– Neural Radiance Fields (NeRF) [Mildenhall et al.  2020]

Real dataset

Large indoor scenes 

Dynamic sequence of human body 
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Experimental Settings

▪ Network Architecture

– In our experiments, we use Fourier transformation as the post-processing 

function in                                          , and set maximum frequency L = 6. 

In detail
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Experimental Settings

▪ Training

– 32 images/batch, 2048 rays/image;

– 8 Nvidia V100 GPUs for 150K updates (~2 days);

– Perform self-pruning every 2.5K iterations;

– Progressive training: halve the voxel size and step size at 5K, 25K and 

75K iterations.

▪ Inference

– Early termination: we set the threshold ε as 0.01 for all the scenes;

– We evaluate on a single V100 GPU at inference time. 
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Quantitative Results
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More Results: Synthetic Dataset
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More Results: Synthetic Dataset
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More Results: Synthetic Dataset
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More Results: BlendedMVS Dataset
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More Results: BlendedMVS Dataset
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More Results: BlendedMVS Dataset
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More Results: Real Dataset (Tanks and Temples)
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More Results: Real Dataset (Tanks and Temples)
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More Result: Zoom-in & Zoom-out
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More Results: Dynamic Scene 
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More Results: Large-scale Indoor Scene
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More Results: Scene Editing and Composition
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Limitations and Future Work

Handling Complex Background

– Our current model cannot handle complex backgrounds; We need to manually 

mask foreground in the image, which is not feasible for real applications.

– Can we model the complex background and the foreground object jointly so to 

be able to  synthesize foreground as well as background?
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Limitations and Future Work

Modeling Lighting Effects

– Our model only models view-dependent color but does not model 

different lighting components, such as albedo, diffusion and specular, 

which may lead to the following issues:
▪ Hard to recover complex lighting effects;

▪ It is impossible to do re-lighting.

– One potential solution is to separately model each component.
▪ Can we decompose the lighting effects in an unsupervised way?
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Limitations and Future Work

▪ Simultaneous Camera Motion Estimation and Neural Rendering 

– Our approach requires multi-view images and their corresponding camera 

parameters as input . 

– Is it possible to simultaneously learn the camera parameters and scene 

representations? In real applications, it is common to have a large 

number of images without camera pose information.

Schwarz et al. "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis." Arxiv 2020.
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Limitations and Future Work

▪ Neural Rendering for Humans

– Our method can simply use a hypernetwork to render dynamic scenes, 

such as moving humans; however the synthesis quality would degrade 

when a large number (e.g. 1k) of video frames need to be encoded into 

a single hypernetwork. We should seek a more efficient way to encode 

dynamic scenes. 

– Add explicit controls on the NSVF results to achieve human motion 

reenactment. 

Image from [Liu et al. 2020]
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Thank You!

Neural Sparse Voxel Fields
Lingjie Liu*, Jiatao Gu*, Kyaw Zaw Lin, Tat-Seng Chua, Christian Theobalt

Paper link: https://arxiv.org/pdf/2007.11571.pdf

Video link: 

https://www.youtube.com/watch?v=RFqPwH7QFEI&list=PLCAViLbA8Ml6KXzG

TENfELX8wcPiXWVT8

https://arxiv.org/pdf/2007.11571.pdf
https://www.youtube.com/watch?v=RFqPwH7QFEI&list=PLCAViLbA8Ml6KXzGTENfELX8wcPiXWVT8

