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WHY WE NEED DIFF. RENDERING? 7> SIGGRAPH 1.

Inverse rendering - oy Pt | g PR L g o |
Enabling gradient-based optimization 4 Update scene: I

Forward pass

Machine learning wp Preceding J»[Diﬁerentiable J#( Succeeding I

Backpropagation through rendering network layer renderer network layer

Backward propagation
(optimize network parameters)
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PREVIOUS DIFF. RENDERING ALGORITHMS - SIGGRAPH [t

GENERAL-PURPOSE PHYSICS-BASED DIFFERENTIABLE RENDERING

Lietay”
Our method addresses

Handling complex geometry
[Li et al. 2018, Zhang et al. 2019] Expensive silhouette detection
[Loubet et al. 2019] Biased approximation

Handling complex light transport effects

All previous methods Unidirectional path tracing only

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

_both challenges efficiently! | &

|

ene parameters that affect visibility




PREVIEW OF OUR RESULTS 7 SIGGRAPH I
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Reference
Negative [ | Positive

Complex geometry

Equal-sample
comparison

[Zhang et al. 2019] [Loubet et al. 2019] Ours
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PREVIEW OF OUR RESULTS 7 SIGGRAPH I
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Reference
Negative [ | Positive

EoeEn

Complex light transport effects

33 s

L ABGRAT

Equal-sample
comparison

e e

[Zhang et al. 2019] [Loubet et al. 2019]
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PRELIMINARIES
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REYNOLDS TRANSPORT THEOREM SIGGRAPH I

d ? df
— | fdA = dA + g di
Boundary domain
Reynolds transport theorem Interior integral 1
Generalization of Leibniz’s rule
f=0 f=1
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REYNOLDS TRANSPORT THEOREM SIGGRAPH I

: Size of the emitter
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Irradiance at x

E =j L;(w)cosO do(w)
2

Unit hemisphere

Differential irradiance at x

A _f L;(w)cosO do(w)
H2
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REYNOLDS TRANSPORT THEOREM SIGGRAPH I

: Size of the emitter

High

E = j L;(w) cosé do(w) The integrand Discontinuous points
2 (r-dependent)
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REYNOLDS TRANSPORT THEOREM SIGGRAPH I

f
I
E =f L;(w) cosf do(w)

High

Discontinuous points
(r-dependent)

The integrand
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SOURCE OF DISCONTINUITIES 7~ SIGGRAPH It

Boundary edge Sharp edge Silhouette edge |

Boundary edge

Silhouette "
detection | ]
¥ Silhouette
edge

Visibility-driven
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OUR TECHNIQUE
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OUR CONTRIBUTIONS
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f (%)

w
f(xX(p))

Reparameterization
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SIGGRAPH 1

Monte Carlo Estimator



FORWARD PATH INTEGRAL

Measurement
contribution function

I = f(x) d p(x)

Area-product

Path space measure

Introduced by Veach [1997]

Foundation of sophisticated Monte Carlo
algorithms (e.g., BDPT, MCMC rendering)

SIGGRAPH 1

L|ght path X = (xo, xl,xz,X3)
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DIFFERENTIAL PATH INTEGRAL

Path Integral

I = fﬂf ®)du®

A generalization of
Reynolds theorem

d/

dm

SIGGRAPH 1

We now derive dIx/ax in Eq. (25) using the recursive relations pro-
vided by Egs. (21) and (24). Let

0
h:, )= [l—];?f:,,ﬂg(xn': xn’—Z‘xn'—l)] We(xn — xN-1), (52)

(1) ! %
by = B i Y Vo), (53)
0) ._ 40 .
Ab = h,, AG(xps X2 2:Xn? 1) [G(X s Xt 20Xt 1) (54)

nn

for 0 < n < n” £ N. We omit the dependencies of h:,o', h:,”. and

(0) 2 . .
Ah" v ON Xntl,. .., xn for notational convenience.

We now show that, for all 0 < n < N, it holds that

N dA(xy),

n'=n+1

hp(xp; Xp-1) = j;“.\' n hLO) (55)

and

hn(xni Xn-1) = j;“.\'—n I(htro) i h:wmhr(lnl l_[;.,\::,,ﬂ dA(xy)

[T dA(x;), (56)
n<i<N
i#n’

N (0)
+ Zn’:n-H f Ahn.n’ Vm”l () dt (xw)

where the integral domain of the second term on the right-hand
side, which is omitted for notational clarity, is M(x) for each x;
with i # n’ and 9M,y (), which depends on x,y_1, for x,y.

It is easy to verify that Egs. (55) and (56) hold for n = N — 1. We
now show that, if they hold for some 0 < n < N, then it is also
the case for n — 1. Let g,,—1 = g(xp; xp—2,xp—1) forall0 < n < N.
Then,

hp-1(xp-13 Xp-2) = fMg,,_, fM_\.,,, h},(” n}:l':,.ﬂ dA(x,) dA(x,)
8 (0) AN
= JMN-n+t h,, 1 nn’=n dA(xp), (57)

and
hn-1(xn-1; Xn-2)

= [ai [gn-1hn + gn-1(hn — hn x(xn) V(xn))] dA(xn)
+ ’01\(,, Agn— hp vm" de(xp)

2 (0)
= _/:\(,\' n+l {gn—l hy " +gn-1

N (0)
*: Zn\'=n+l f In-1 Ahn.n’ Vm,,' (xm) de(xw)

n-1
[T dA(x;)
n<isN

i#n’

+: [ Agn-1 h:xm vdm,, de(xp) n;\,'::,,ﬂ dA(xp)
= f/\(f\un»x

(hun ) _h((n hm
+ Z;y:n .[ Ah;:"—)lﬂ' vm". (xp) de(xy)

N
n-1 n-1"n-1 nn’:ndf“x"')

[T dA(x)).
ngis’;\‘

i#n

(h:,o' -_h:lmh(ll H”;}'/:de(x"')

(58)

Thus, using mathematical induction, we know that Egs. (55) and

(56) hold forall0 < n < N.

Notice that hém = f and Ah(')lon’, = Afyy, where Afyy follows the

definition in Eq. (28). Letting n = 0 in Eq. (56) yields
ho(x0) = [yn [f(2) = £(2) ZN_, k(xw) V(xw) | TTN-, dA(x)
+ Iy [ Afw(2) Vo, de(xy) T1 dA(xi). (59)
. i<N
O
Lastly, based on the assumption that hy is continuous in x, Eq. (25)
can be obtained by differentiating Eq. (23):
% =42 fM ho(x0) dA(xo)
= [ [ho(x0) = ho(x0) k(x0) V(x0) | dA(x0)

+ j;/ﬁ" ho(xo) Vmo(xn) dé(xp) (60)
= Jou, [f®) = F(2) TR x(xk) V(xk) ] dp()

+ZRo me Afic (%) Vazg, duy x (2)-
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Full derivation in the paper
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DIFFERENTIAL PATH INTEGRAL SIGGRAPH I

A generalization of

Path Integral Reynolds theorem Differential Path Integral
1= | f@d® == - [ s @a + [ @i
Q) Q)
path space] Intertmumtegrpdth space -7
Original [ ) [ )
ight PRfpes of discatinuity edge: /x |
0
X X
X 1
< V 3 3
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REVISIT - DIFFERENTIAL IRRADIANCE SIGGRAPH I

: Size of the emitter Low I

High  Discontinuities of f

E = j L;(w) cosO do(w) Differentiation> — —dO' +f g dl
H2 - _ HZ OH?2

~
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DIFFERENTIAL IRRADIANCE SIGGRAPH I

Spherical integral Surface integral

L(m)

Change of
variable

E = j L;(w) cosO do(w) E = f Le(y = x) G(x,y) dA(Y)
H2 L(m)
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DIFFERENTIAL IRRADIANCE SIGGRAPH I

Spherical integral Surface integral

Low I High

Change of
variable

discontinuous continuous

E = f L;(w) cosf do(w) E = f Le(y » x) G(x,y) dA(y)
H2 L(m)

constant domain evolving domain

© 2020 SIGGRAPH. ALL RIGHTS RESERVED. . PATH- SPACE DIFFERENTIABLE RENDERIN G



DIFFERENTIAL IRRADIANCE SIGGRAPH I

Low N High Boundary of L(m)
\ /
f Interior

- — N dE d
£= [ L-06(ia0) [Sraemen > 3= Taa+ [ gar
L(T) T Jgmdm dL(T)

A generalization of
Reynolds theorem
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REPARAMETERIZATION SIGGRAPH I

E = j L.(y » x) G(x,y) dA(y)
L(1)

A\
‘e
3
3 |

............ ®
A ‘o / X(p,m,) Parameterize L(m) using some fixed L:
p‘ X(p, 1) y = X(p,m)
L{m) where X(-, ) is one-to-one and continuous
L(1y)
L(m,)
Reparameterization . ()
with y = X(p, m): E= L Le(y = 0)G(x,y) ‘dA(p) dA(p)
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REPARAMETERIZATION SIGGRAPH I

f
E = f Ze(y - X) G(x,y3 dA(y)
m L(m)

dE. [ df f

_ = —dA + dl

dr  Jymdr az:(n)g

=0
@ y =Xx(p,m) fo
o (y)
E_JLO L.(y = x) G(x, y)‘dA( ) dA(p)

dE _ deA +f dl
dr Jp, dm aﬁogo

* 0
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REPARAMETERIZATION

Reparameterization for irradiance

E = f L.(y - x)G(x, y)dA(y)
L(1)

Reparameterization for path integral

= f@dae
Q(1)
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SIGGRAPH [t

y = X(p,m) ()
> E:LOL(yex)G(xJ’)‘dA()dA(p)
0
Fixed surface
X =X(p,m) ¥
_|de®)]
| = —| d
> QOf(x) 3 (p) u(p)

Fixed path space —T

1—[ ‘dA(xl)
dA(p;)
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DIFFERENTIAL PATH INTEGRAL SIGGRAPH I

Original Original
N = dI df(x) , _ e
=] fe®d® = TEa@+| g@awm
Q(m) T Jam G° 0Q(m)
Pro:  No global parametrization required
x =X(p,n) Con: More types of discontinuities
AV |
Reparameterized Reparameterized

Al [ d (. |du®
GO -G —C

Pro:  Fewer types of discontinuities
Con: Requires global parametrization X

)du(z_?) " j 9P (B)

90,

= -[Q()f( g |dli(19)
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DIFFERENTIAL PATH INTEGRAL 7> SIGGRAPH 1.

Differential path integral

Visibility-driven

=

Silhouette
edge
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MONTE CARLO
ESTIMATORS
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ESTIMATING INTERIOR INTEGRAL SIGGRAPH I

(Reparameterized) ﬂ B J u(x) _ J g
Differential path Integral o J_ ( & )‘d D) du(p) + aﬂog(p)dﬂ (p)

Interior integral

Original [ ) Can m using identical path

light path ’ & samplirfty &renele<cstnsidfard rendering

Unidirectional path tracing

X1 Bidirectional path tracing
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ESTIMATING BOUNDARY INTEGRAL SIGGRAPH I

(Reparameterized) | J < (_)‘ du(x) ) _ J o
- - - = du(p) + p)dy' (p)
Differential path Integral ~ dn  Jg_ o Jx du(p) () aﬂog( )
Silhouette detection
[Li et al. 2018, Zhang et al. 2019]
[ /1 \ ]
)
.......... xo\
\ \ ,|
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ESTIMATING BOUNDARY INTEGRAL SIGGRAPH I

(Reparameterized) a1 _ j i < £(®)
Q

Differential path Integral  arn o om

du(x) )

| @ + | @) @)

90,

where x = X(p, )

Construct ' 1

Construct source and sensor subpaths
e > 0D e >

To improve efficiency
Next-event estimation
Importance sampling of boundary segments
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OUR ESTIMATORS SIGGRAPH I

Unidirectional estimator Bidirectional estimator
Interior: unidirectional path tracing Interior: bidirectional path tracing
. unidirectional sampling of subpaths . bidirectional sampling of subpaths

Unidirectional path tracing + NEE Bidirectional path tracing
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RESULTS 7 SIGGRAPH I

COMPLEX GEOMETRY et A

Reference

Negative NN

~ Positive

Equal-sample |
comparison

[Zhang et al. 2019] [Loubet et al. 2019] Ours
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RESULTS

COMPLEX GEOMETRY

Target image

+ Optimizing rotation angle

- Equal-sample per iteration

- ldentical optimization setting
— Learning rate (Adam)
— Initializations

© 2020 SIGGRAPH. ALL RIGHTS RESERVED.

[Loubet 2019] Ours

[Zhang 2019]

Iteration #0 Deriv. Image

PATH-SPACE DIFFERENTIABLE RENDERING

7 SIGGRAPH
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Param. RMSE

THINK
BEYOND

56 le—2

Img. RMSE

4.2

3.1

2.3

T
0 25

50

T
75

T T
100 125

17

le-2

T
25

50

T
75

T T
100 125

5.6

4.2 1

3.1

2.3

0 25

50

75

100 125

17

le-2

25
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100 125

5.6

4.2 1

3.1

2.3

0 25

50

75

100 125

17

25

50

75

100 125
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RESULTS 7 SIGGRAPH I

COMPLEX LIGHT TRANSPORT EFFECTS aw2a. suza sisstarnons BLYOND

Reference

Equal-sample comparison , _
Negative [N

- Positive

fassrii = P aee e o

[Zhang et al. 2019] [Loubet et al. 2019] Ours (unidirectional) Ours (bidirectional)
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RESULTS 7 SIGGRAPH I

200

200

COMPLEX LIGHT TRANSPORT EFFECTS w2 szazosiagurin BEJUND
Iteration #0 Deriv. Image Param. RMSE e Img. RMSE
Target image =
é . 0.32 A
@
- 0.18-
@)
:_§ ‘ 0.58
[
3 { 0.32 -
- |
: 0.18
O
° O pti m iZ i n g . 50 100 150 200 - 0 50 100 150
— Glass IOR '§I' '
— Spotlight position N
- Equal-time per iteration o |
- ldentical optimization setting 8
N
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RESULTS

© 2020 SIGGRAPH. ALL RIGHTS RESERVED.

Initial

7, THINK
7 SIGGRAPH 2
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Optimizing cross-sectional shape (100 variables)

Cross-sectional shape
(displacement x 20)

le—2 Img RMSE
1.40 A
1.10 +
0.91 A1 = target shape
= cUrrent shape
0.73 1

T T T T T T
0 25 50 75 100 125 150

PATH-SPACE DIFFERENTIABLE RENDERING
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RESULTS SIGGRAPH 1t

Original image Derivative image Original image Derivative image

Optimize (initial) Optimize (final)
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LIMITATIONS AND FUTURE WORK SIGGRAPH 1t

Surface-based light transport

More sophisticated Monte Carlo estimators

Markov-chain Monte Carlo (MCMC) methods

Better importance sampling of paths
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CONCLUSION SIGGRAPH [

Differential path integral f % FE@duE) + ] I @A @
Separated interior and boundary 2 00
Interior integral
Reparameterization <)

Only need to consider silhouette edges £y

L(my)

Unbiased Monte Carlo methods
Unidirectional and bidirectional estimators
No silhouette detection Is needed

4
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