SIGGRAPH.ORG THINK 2020 S2020.SIGGRAPH.ORG BEYOND

LANGEVIN MONTE CARLO RENDERING WITH GRADIENT-BASED ADAPTATION

Fujun Luan¹, Shuang Zhao², Kavita Bala¹, Ioannis Gkioulekas³

¹Cornell University ²University of California, Irvine ³Carnegie Mellon University

GRADIENTS ARE AWESOME SIGGRAPH

Deep learning

params

Inverse problems

Image processing

GRADIENTS IN RENDERING

Differentiable rendering is a hot topic:

[Gkioulekas et al. 2013, 2016], [Khungurn et al. 2015], [Zhao et al. 2016], [Che et al. 2018], [Li et al. 2018], [Tsai et al. 2019], [Loubet et al. 2019], [Zhang et al. 2019, 2020], [Nimier-David et al. 2019, 2020]...

GRADIENTS IN RENDERING

rendering

params

We focus on forward rendering:

Optimization:MCMC sampling:- Stochastic Gradient Descent (SGD)- Langevin Monte Carlo (LMC)

OUTLINE

Introduction to Langevin Monte Carlo (LMC) Optimization-inspired acceleration

Ensuring unbiasedness

Gradient caching

Ours

PART 1 Introducing Langevin MC

SAMPLING IN RENDERING

 $I = \int f(x) dx$

- Estimated with Monte Carlo
- Requires $x \sim f$ for efficiency

Use ∇f to improve sampling

Primary sample space $x \in [0, 1]^N$

SGD OVERVIEW

Optimization problem: $\max_{x} f(x)$

Stochastic gradient descent/ascent: $x_t = x_{t-1} + s_{t-1} \nabla f(x_{t-1})$ scalar step size

KELEMEN 2002

Apply Metropolis Hastings to accept/reject

LMC OVERVIEW

Sampling problem:

$$x_t \sim f$$

Langevin MC:
 $x_t = x_{t-1} + s_{t-1} \nabla f(x_{t-1}) + \frac{1}{s_{t-1}} N(0, \sigma^2 I)$

Apply Metropolis Hastings to accept/reject

Paul Langevin

LMC OVERVIEW

Sampling problem:

$$x_t \sim f$$

Langevin MC:
 $x_t = x_{t-1} + s_{t-1} \nabla f(x_{t-1}) + \frac{1}{s_{t-1}} N(0, \sigma^2 I)$

Apply Metropolis Hastings to accept/reject

SGD VS. LMC

Optimization:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$
SGD:

$$\boldsymbol{x}_t = \boldsymbol{x}_{t-1} + \boldsymbol{s}_{t-1} \nabla f(\boldsymbol{x}_{t-1})$$

Sampling:

$$x_t \sim f$$

LMC:
$$x_t = x_{t-1} + s_{t-1} \nabla f(x_{t-1}) + \frac{1}{s_{t-1}} N(0, \sigma^2 I)$$

Original LMC MSE: 0.2465

PART 2

Optimization-inspired acceleration

RING CAUSTICS

RING CAUSTICS

SELECTING THE PRECONDITIONING MATRIX SIGGR

Exact **Hessian** of *f* [Li et al. 2015] requires **2nd-order** gradients full matrix expensive matrix operations Approximate **Hessian** of *f* (ours) reuses **1st-order** gradients diagonal matrix efficient scalar operations

quasi-Newton methods: Adam, BFGS, ...

Adam preconditioning matrix K_t is a function of **all** previous gradients

$\frac{\mathbf{K}_{\mathbf{x}}}{\nabla f(\mathbf{x}_{\mathbf{y}})(\mathbf{x}_{\mathbf{y}})(\mathbf{x}_{\mathbf{y}})(\mathbf{x}_{\mathbf{y}})(\mathbf{x}_{\mathbf{y}})}$

FULL VS. DIAGONAL PRECONDITIONING

$$\boldsymbol{x}_{t} = \boldsymbol{x}_{t-1} + \boldsymbol{K}_{t-1} \nabla f(\boldsymbol{x}_{t-1}) + \boldsymbol{K}_{t-1}^{-1} N(0, \sigma^{2} \boldsymbol{I})$$

- Matrix-vector multiplication with gradient
- Matrix inversion for sampling

More accurate but expensive

 $x_{t} = x_{t-1} + \operatorname{diag}(K_{t-1})\nabla f(x_{t-1}) + \operatorname{diag}(K_{t-1})^{-1} N(0, \sigma^{2} I)$

Better at equal time!

Less accurate but fast

LMC + Adam, diagonal MSE: 0.0779

Bias problem

Unfortunately, naïvely combining LMC + Adam causes Bias!

PART 3 Ensuring unbiasedness

WHY BIASED?

Unbiasedness requires **asymptotic time homogeneity**: Preconditioning matrix $K_t \rightarrow \text{constant}$, when $t \rightarrow \infty$

Adam violates asymptotic time homogeneity:

$$\begin{aligned} \mathbf{x}_{t_1} &= \mathbf{x}_{t_1-1} + \mathbf{K}_{t_1-1} \nabla f(\mathbf{x}_{t_1-1}) + \mathbf{K}_{t_1-1}^{-1} N(0, \sigma^2 \mathbf{I}) \\ \mathbf{x}_{t_2} &= \mathbf{x}_{t_2-1} + \mathbf{K}_{t_2-1} \nabla f(\mathbf{x}_{t_2-1}) + \mathbf{K}_{t_2-1}^{-1} N(0, \sigma^2 \mathbf{I}) \\ \mathbf{x}_{t_3} &= \mathbf{x}_{t_3-1} + \mathbf{K}_{t_3-1} \nabla f(\mathbf{x}_{t_3-1}) + \mathbf{K}_{t_3-1}^{-1} N(0, \sigma^2 \mathbf{I}) \\ \text{same point} & \text{different} \\ \text{preconditioning matrices} \end{aligned}$$

SOLUTION 1: DIMINISHING ADAPTATION

Unbiasedness requires **asymptotic time homogeneity**: Preconditioning matrix $K_t \rightarrow \text{constant}$, when $t \rightarrow \infty$

$$K_t' = |K_t / t| + I$$

LMC + Adam, diagonal (w/ diminishing adaptation)

3.25

10.8

0.3

0.45

DRAWBACKS OF DIMINISHING ADAPTATION

$K'_t = K_t / t + I$

- Gradual loss of adaptation
 - Problematic for complex scenes
- No gradient reuse

- Need to re-calculate gradients

New path

PART 4 Gradient caching

SOLUTION 2: CACHE-DRIVEN ADAPTATION

Unbiasedness requires **asymptotic time homogeneity**: Preconditioning matrix $K_t \rightarrow \text{constant}$, when $t \rightarrow \infty$

Cache-driven adaptation MSE: 0.0459

RESULTS

COMPARISONS WITH PRIOR WORK

Main Test Suite

Teaser

Salle De Bain

Living Roam

White Room

Car

Pool

Spaceship

Necklace

Manufa Planet

Bookshalf

Bottla

Planing Dancer

MMLT [Hachisuka et al. 2014] 20 mins

SOCRAPH

SHORAFH

(and

MIN

AL. R. -

10 mins

10 min

MEMLT [Jakob 2012]

H2MC [Li 2015]

Ours

MMLT [Hachisuka 2014]

Reference

RJMLT [Bitterli 2017]

MEMLT [Jakob 2012]

H2MC [Li 2015]

MMLT [Hachisuka 2014]

RJMLT [Bitterli 2017]

LIMITATIONS AND FUTURE WORK

require gradients

becoming common in modern renderers

global exploration

potentially use gradient cache for this purpose

TAKE-HOME MESSAGE

Introduction to Langevin Monte Carlo (LMC) Optimization-inspired acceleration

Ensuring unbiasedness

Gradient caching

ACKNOWLEDGMENTS

Code and more results on the project website!

Our sponsors

https://tinyurl.com/RenderLMC

aws