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General Reflectance Function

* A real material’s surface reflectance function is a very complex function of
16 variables.

Reflectance

Transmittance

general reflectance function (GRF)
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Taxonomy
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Texture, bump-map, albedo map, etc.

Multispectral Texture

Complexity of measurement and modelling



BRDF

e Bidirectional Reflectance Distribution Function

* BRDF f,- describes surface reflection at a point x for light incident from
direction w; = (0;, ¢;) reflected into direction w,, = (6., @,-)

L(w,)
L(w,)cos 6 do,

f(o - ) =




Material Apperance

Raymond et al. — Multi-Scale Rendering of
Scratched Materials using a Structured SV-BRDF
Model. 2016



Material Apperance

Heitz et al. - Multiple-Scattering Microfacet
BSDFs with the Smith Model, SIGGRAPH 2016



Material Apperance

Vincent Schussler et al. - Microfacet-based normal mapping
for robust Monte Carlo path tracing, SIGGRAPH Asia 2017



Material Apperance

Yan et al. -Rendering Specular Microgeometry
with Wave Optics, SIGGRAPH 2018



BRDF Acquisition




Measured BRDF
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Measured BRDF
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Measured BRDF

Background
Environment
Lighting

+ Accurate Memory footprint

Computational cost

Material Sample
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Related Work

A data-driven reflectance model
[Matusik 2003]



Related Work

A data-driven reflectance model On Optimal, Minimal BRDF Sampling
[Matusik 2003] for Reflectance Acquisition

[Nielsen 2015](IPCA)



Related Work
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Bright for Reflectance Acquisition
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An intuitive control space for
material appearance
[Serrano et.al 2016]
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Related Work
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beige-fabric

An intuitive control space for
material appearance
[Serrano et.al 2016]

I diffuse PC + 1 diffuse PC + Nielsen ef al.

3 specular PCs 5 specular PCs

original

specular-
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Connecting measured brdfs to analytic brdfs
by data-driven diffuse-specular separation.
[Sun et.al 2018]



Related Work

Nielsen et al.

1 diffuse PC + 1 diffuse PC +
5 specular PCs

original 3 specular PCs

specular-
orange-phenolic
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Connecting measured brdfs to analytic brdfs
by data-driven diffuse-specular separation.
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An intuitive control space for
material appearance
[Sun et.al 2018]

[Serrano et.al 2016]



Related Work

Fitting measured BRDF to analytic models

Fitting algorithm



Related Work

Fitting measured BRDF to analytic models

Measured Ward Blinn-Phong Lafortune

- -
-~ ~
\

[Ngan 2005] Experimental Analysis of BRDF Models




Related Work

Measured Ward Blinn-Phong Lafortune
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- The fitting process is time-consuming and unstable.

- For some materials, they are not accurate.




Our Approach

‘

* Deep learning based
dimensionality reducer
to explore a nonlinear
low-dimensional

manifold for measure
BRDFs

Original BRDF

DeepBRDF



DeepBRDF ' BRDF Editing

MERL BRDF Database Parameter Tweaking
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Loss Function

‘ / AutoEncoder \

Encoder Decoder




Loss Function

Reference
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Geometric Interpretation

Latent space

Proj ecteds<mles \

8

Ornigmal samples



Quality Analysis

® Visual quality
comparisons against PCA
and improved PCA (IPCA)

IPCA(10)

® (Quantitative evaluation
in terms of RelAE is
provided for each
reconstructed result

Ours(10) IPCA(40)

Reference

SPECULAR-
MIOLET-



Quality Analysis

® Visual quality
comparisons against PCA
and improved PCA (IPCA)

® (Quantitative evaluation
in terms of RelAE is
provided for each
reconstructed result

».

PCA(40)

A , | |
RelAE: 0,136 REIAE: 0,210 RelAE: 0,112 RelAE: 0.080
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Quality Analysis

PCA(40)

® Visual quality
comparisons against PCA
and improved PCA (IPCA)
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® (Quantitative evaluation
in terms of RelAE is
provided for each
reconstructed result

IPCA(40)
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Quality Analysis

| | | | |
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* Reconstruction error comparison of our DeepBRDF against PCA
and IPCA with varying dimensions.



Quality Analysis

COLOR-CHANGING-PAINT] DELRIN TWO-LAYER-SILVER
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® From left to right in each group of closeups, we compare the
method of Sun et al. [SJR18], ours and the reference, with
corresponding RelAE.




Quality Analysis

Ours(10) IPCA(10)

Reference

® Evaluation on other BRDF data (not in MERL dataset)



Applications

® Measured BRDF editing

® Single Image BRDF Recovery



Measured BRDF Editing

Measured BRDF Perceptual appearance
LOW-dIm-' < P Attributes
represe Nntation
Diffuse albedo(ay)
DeepBRDF (Y) Specular albedo(ay)
(10D Latent Vector) roughness(g)




Measured BRDF Editing

Train a Back Propagation (BP) regression network to establish the
relationship between Y (latent vector) and a(ag € R3,ay €
R3, g € R)



Measured BRDF Editing

Ours(10) IPCA(10)

[PCA(40)

® Linear interpolation between RED-METALLIC-PAINT and RED-
FABRIC using IPCA and our DeepBRDF, respectively



Measured BRDF Editing

® Editing diffuse albedo



Measured BRDF Editing

RED-PLASTIC

Ours

[[SGM*16]

® Editing the roughness of RED-PLASTIC



Measured BRDF Editing

DeepBRDF

IPCA

Origin g=0.03 g =0.06 g=0.1 g=1).2

® Editing the roughness of SPECULAR-YELLOWPHENOLIC with IPCA-
based representation (bottom row) and DeepBRDF-based
representation (top row)



Single Image BRDF Recovery

BRDF
Image




Single Image BRDF Recovery

Image BRDF

Decoder
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Single Image BRDF Recovery
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Convolution (3x3 kernel, stride 2) + BN + Rel U WxHxC Max-pooling (3x3 kernel, stride 2)

Fully connected + RelU {

‘ Fully connected

® A new CNN is trained to map the input image to the latent space
of DeepBRDF.



Single Image BRDF Recovery

® Comparison with | t

A

RelAE: 0.080

the method of Ye et
al. [YLD*18] in
homogeneous BRDF
recovery.
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Input image Reference Ye et al.



Single Image BRDF Recovery

® BRDF recovery results for
real-world images.

Ours Input image

Ye et al.




Conclusion

» We have presented DeepBRDF, a deep-learning-based representation for
Measured BRDF.

» We have apply the DeepBRDF to edit measured BRDFs.

» We have apply the DeepBRDF to the task of single image BRDF recovery.



Thank youl!
Q&A



