DeepBRDF: A Deep Representation for Manipulating Measured BRDF

Bingyang Hu¹

Jie Guo^{1*}

Yanjun Chen¹

Mengtian Li¹

Yanwen Guo¹

¹State Key Lab for Novel Software Technology, Nanjing University

*guojie@nju.edu.cn

+ Material

General Reflectance Function

• A real material's surface reflectance function is a very complex function of 16 variables.

general reflectance function (GRF)

$$Y_r^{GRF} = GRF(\lambda_i, x_i, y_i, z_i, t_i, \theta_i, \varphi_i, \lambda_v, x_v, y_v, z_v, t_v, \theta_v, \varphi_v, \theta_t, \varphi_t)$$

Taxonomy

BRDF

- Bidirectional Reflectance Distribution Function
- BRDF f_r describes surface reflection at a point x for light incident from direction $\omega_i = (\theta_i, \varphi_i)$ reflected into direction $\omega_r = (\theta_r, \varphi_r)$

$$f_r(\vec{\omega}_i \rightarrow \vec{\omega}_r) \equiv \frac{L_r(\vec{\omega}_r)}{L_i(\vec{\omega}_i)\cos\theta_i d\omega_i}$$

Raymond et al. – Multi-Scale Rendering of Scratched Materials using a Structured SV-BRDF Model. 2016

Heitz et al. - Multiple-Scattering Microfacet BSDFs with the Smith Model, SIGGRAPH 2016

Vincent Schussler et al. - Microfacet-based normal mapping for robust Monte Carlo path tracing, SIGGRAPH Asia 2017

Yan et al. –Rendering Specular Microgeometry with Wave Optics, SIGGRAPH 2018

BRDF Acquisition

Measured BRDF

MERL BRDFs

UTIA BRDFs

Measured BRDF

Measured BRDF

A data-driven reflectance model [Matusik 2003]

A data-driven reflectance model [Matusik 2003]

On Optimal, Minimal BRDF Sampling for Reflectance Acquisition [Nielsen 2015](IPCA)

An intuitive control space for material appearance [Serrano et.al 2016]

On Optimal, Minimal BRDF Sampling for Reflectance Acquisition [Nielsen 2015](IPCA)

An intuitive control space material appearance [Serrano et.al 2016]

Connecting measured brdfs to analytic brdfs by data-driven diffuse-specular separation. [Sun et.al 2018]

[Serrano et.al 2016]

by data-driven diffuse-specular separation. [Sun et.al 2018]

Fitting measured BRDF to analytic models

Fitting measured BRDF to analytic models

[Ngan 2005] Experimental Analysis of BRDF Models

Measured

Ward

Blinn-Phong

Lafortune

- The fitting process is time-consuming and unstable.
 - For some materials, they are not accurate.

Our Approach

 Deep learning based dimensionality reducer to explore a nonlinear low-dimensional manifold for measure BRDFs

Original BRDF

DeepBRDF

Basic Idea

Network Architecture

Network Architecture

Loss Function

Loss Function

Geometric Interpretation

- Visual quality comparisons against PCA and improved PCA (IPCA)
- Quantitative evaluation in terms of RelAE is provided for each reconstructed result

- Visual quality comparisons against PCA and improved PCA (IPCA)
- Quantitative evaluation in terms of RelAE is provided for each reconstructed result

- Visual quality comparisons against PCA and improved PCA (IPCA)
- Quantitative evaluation in terms of RelAE is provided for each reconstructed result

 Reconstruction error comparison of our DeepBRDF against PCA and IPCA with varying dimensions.

• From left to right in each group of closeups, we compare the method of Sun et al. [SJR18], ours and the reference, with corresponding ReIAE.

Evaluation on other BRDF data (not in MERL dataset)

Applications

• Measured BRDF editing

• Single Image BRDF Recovery

Train a Back Propagation (BP) regression network to establish the relationship between Y (latent vector) and $\alpha(\alpha_s \in \mathbb{R}^3, \alpha_d \in \mathbb{R}^3, g \in \mathbb{R})$

 Linear interpolation between RED-METALLIC-PAINT and RED-FABRIC using IPCA and our DeepBRDF, respectively

• Editing diffuse albedo

RED-PLASTIC

• Editing the roughness of *RED-PLASTIC*

 Editing the roughness of SPECULAR-YELLOWPHENOLIC with IPCAbased representation (bottom row) and DeepBRDF-based representation (top row)

 A new CNN is trained to map the input image to the latent space of DeepBRDF.

 Comparison with the method of Ye et al. [YLD*18] in homogeneous BRDF recovery.

BRDF recovery results for real-world images.

Conclusion

- We have presented DeepBRDF, a deep-learning-based representation for Measured BRDF.
- \succ We have apply the DeepBRDF to edit measured BRDFs.
- > We have apply the DeepBRDF to the task of single image BRDF recovery.

Thank you! Q&A