On the Accurate Large-Scale Simulation of Fe rrofluids 26 Iron

Libo Huang Torsten Hädrich Dominik L. Michels KAUST 1

Real footage

Meshed View

Particle View

Outline

- Why it has spikes?
- Related work
- Our method (physically based)
- Results & Discussion

No external magnetic field

random direction

With external magnetic field

dominant direction

With external magnetic field

constant magnetic field

Field Direction

Surface Tension

$F = F_{surface} + F_{fluid}$

Finite Element Method

Particle

Challenges

FEM

• Remeshing the fluid and air

Particle

- Approximating continuous ferrofluid
- Accurate and stable magnetic forces

Our solution

Only particles, no re-meshing

- 1. Smooth magnets, continuous fluid
- 2. Forces of smooth magnets, accurate, stable
- 3. Fast multipole method, $O(N^2) \rightarrow O(N)$

Related Work

From visual computing Ferrofluid: [Ishikawa et al. 2012, 2013] Rigid magnet: [Thomaszewski et al. 2008] Rigid magnet: [Kim et al. 2018]

Post processing

Rigid magnet

Related Work

From math & physics

- [Nochetto et al. 2016]
- [Yoshikawa et al. 2010]
- [Lavrova et al. 2006, Gollwitzer 2006]

2D dynamic

One spike

The simulator

x(t)

Explicit Scheme

*F*_{fluid}

*F*surface

F_{magnet}

Smooth Particle Hydrodynamics [Adami et al. 2012]

SPH Surface Tension [Yang et al. 2017]

> Magnetic Solver (ours)

F(t, x)

Smooth Magnet

Point

Smooth

Discontinuous

Continuous

Solve Magnetization

Input magnetic field

Output: directions

Solve Magnetization

- Note: each smooth magnet affects others
- An optimization problem:
 - Best dominant directions satisfy physics laws.
 - Least square conjugate gradient
 - Fast multipole, $O(N^2) \rightarrow O(N)$

Force Principles

1. \forall nanoparticle \rightarrow magnetic field

2. ∀ nanoparticle ← magnetic forces

Center force (point magnet in smooth field)

Fitted force (smooth magnet in smooth field)

center force

fitted force

no inter-particle F

reference

Real footage

Conclusion

3D dynamic ferrofluid simulator using smooth magnet.

On the Accurate Large-scale Simulation of Ferrofluids Libo Huang, Torsten Hädrich, Dominik L. Michels

Questions?

Unintuitive Why simulating complex ferrofluids? geometry

one iteration

In local coordinates $F_{s \rightarrow t}^{i} = \Lambda^{ijk}(r)m_{s}^{j}m_{t}^{k}$ A third-order tensor (to be measured) gives forces

How to describe ferrofluid?

Particle *i*

Magnitude×Direction = $m_i \in \mathbb{R}^{3^{1}}$

 m_i

1. Particles Generate Magnetic Fields $b_{i}^{\text{fluid}} = \sum_{j=1}^{N} b_{j \rightarrow i}^{\text{fluid}} = \sum_{j=1}^{N} G_{ij} m_{j}$ $G_{ij} \in \mathbb{R}^{3 \times 3}$

2. Magnetic Fields Influence Particles $m_i = c(b_i^{\text{fluid}} + b_i^{\text{external}})$ $c \in \mathbb{R}, \text{constant}$ A correct particle state m generates a field b^{fluid} , which combined with external field b^{external} lead to the same state m.

$$b_i^{\text{fluid}} = \sum_{j=1}^{N} G_{ij} m_j$$
$$m_i = c(b_i^{\text{fluid}} + b_i^{\text{external}})$$

 $\min_{m} \left\| m - c \left(Gm + b^{\text{external}} \right) \right\|_{2}$

Center force:

All nanoparticles moved to particle center to calculate force (bounded but inaccurate).

Fitted force:

All nanoparticles contribute to the force. Pre-calculated, stored as fitted polynomial (accurate surface force).

Fast Multipole Method

