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Outline

 Why It has spikes?
 Related work
 Our method (physically based)

* Results & Discussion



No external magnetic field

Fe |rrofluid
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With external magnetic field

dominant direction
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Challenges

=Y Particle
 Remeshing the * Approximating
fluid and air continuous
ferrofluid

 Accurate and
stable magnetic
forces



Our solution

Only particles, no re-meshing

1. Smooth magnets, continuous fluid

2. Forces of smooth magnets, accurate, stable
3. Fast multipole method, O(N?) - O(N)
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Related Work

From visual computing ¥
—errofluid: [Ishikawa et al. 2012, 2013] =
RIigid magnet: [Thomaszewski et al. 2008]

RIgid magnet: [Kim et al. 2018]

Rigid magnet

Rigid magnet
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2D dynamic

 [Lavrova et al. 2006, Gollwitzer 2006]

* [Nochetto et al. 2016]
* [Yoshikawa et al. 2010]

From math & physics



The simulator

Explicit Scheme

Smooth Particle
Hydrodynamics Fruia
[Adami et al. 2012]

. SPH Surface Tension I
x(t) [Yang et al. 2017] surface

e

Magnetic Solver

(OUI‘S) Fmagnet
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Smooth Magnet



Point Smooth

¥

Finite size cloud

Density Density

Infinite small point

Near center Near center

B(0) undefined B(0) well-defined .,



Point Smooth
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Solve Magnetization

Output: directions
Input

magnetic field



Solve Magnetization

*Note: each smooth magnet affects others

* An optimization problem:
* Best dominant directions satisfy physics laws.
* _east square conjugate gradient

e Fast multipole, O(N?) — O(N)



Force Principles

1. V nanoparticle - magnetic field

2. V nanoparticle < magnetic forces



Center force
(point magnet
IN smooth field)

Fitted force

(smooth magnet

In smooth field)
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Simulation

Real footage




center force fitted force




no inter-particle F reference
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Simulation




Conclusion

3D dynamic ferrofluid simulator
using smooth magnet.
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one iteration 20 max
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In local coordinates Fi,, = AY*(r)mim¥

A third-order tensor (to be measured) gives forces



Susceptibility <« Nanoparticle Density
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How to describe ferrofluid?

Particle i

Magnitude xDirection = 11, € R?



1. Particles Generate Magnetic Fields

N N
=Y b= Y6,
j=1 j=1

G;j € R>

2. Magnetic Fields Influence Particles

— C( 4 ngternal)
L
¢ € IR,constant
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A correct particle state m generates a field
which combined with external field he*t¢™al |ead

to the same state m. .
j=1

— C( + bl_external)

min” o C(G 1 bexternal)”2

X



Center force:

All nanoparticles moved to particle center
to calculate force

Fitted force:

All nanoparticles contribute to the force.
Pre-calculated, stored as fitted polynomial



b=GGm

200K 400K

Naive 30s

600K 800K
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