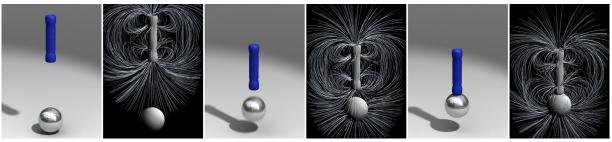


A LEVEL-SET METHOD FOR MAGNETIC SUBSTANCE SIMULATION

Xingyu Ni, Peking University Bo Zhu, Dartmouth College Bin Wang, Beijing Film Academy Baoquan Chen, Peking University

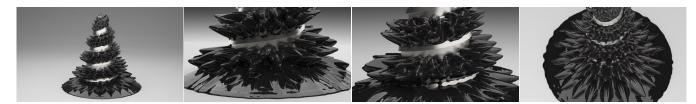
MAGNETIC SIMULATION

- Magnetic interaction
 - Phenomena in life
 - Applications in industry
- Magnetic simulation in graphics
 - Magnetic rigid bodies
 - [Thomaszewski et al. 2008]
 - [Kim et al. 2018]
 - Magnetic liquids (ferrofluids)
 - [Huang et al. 2019]
- Observation
 - Need for a unified framework
 - All based on Lagrangian views



[SIGGRAPH 2008] Magnets in Motion

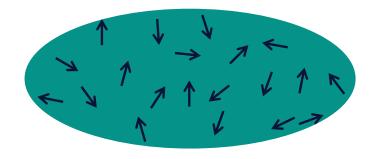
[SIGGRAPH 2018] Magnetization Dynamics for Magnetic Object Interactions



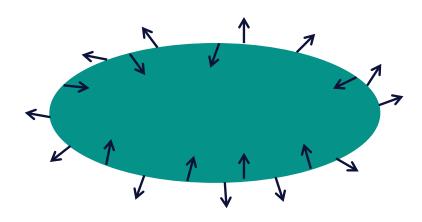
[SIGGRAPH 2019] On the Accurate Large-scale Simulation of Ferrofluids

- Treat magnetic interaction as interfacial force
 - Solving the magnetic-mechanical coupling problem efficiently
- Based on an Eulerian view
 - Taking advantage of the level-set method
- Model a broad range of magnetic phenomena in a unified way
 - Treating classical simulators simply as black boxes
 - Supporting fluids, solids, and their couplings
- Include an efficient, precise numerical scheme
 - Introducing magnetic force by solving a Poisson equation with jump conditions
 - Especially easy to be incorporated into a standard Euler fluid solver

- The first step to simulate the motion of a physical system
 - To establish the dynamics of this system
 - Equivalent to determining what the form of force is in Newtonian mechanics
- Magnetic force:
 - Yet to be definitely answered



Volumetric (throughout the substance)



Interfacial (only on the surface)

- The Maxwell stress tensor $T_{\rm m}$
 - $T_{\rm m} = \frac{1}{\mu_0} \left(\boldsymbol{B} \otimes \boldsymbol{B} \frac{1}{2} B^2 \boldsymbol{I} \right)$ in vacuum, with the electric terms omitted
 - μ_0 is the constant *vacuum permeability*
 - **B** is the magnetic induction intensity
 - *I* is the second-order unit tensor
 - Physicists compute magnetic force by taking $f_{m} = \nabla \cdot T_{m}$
- Abraham–Minkowski controversy
 - What the form of $T_{\rm m}$ is in matter
 - Einstein-Laub form vs. Minkowski form

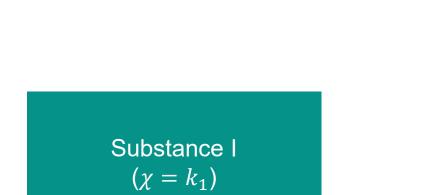
Form	The Maxwell stress tensor	Magnetic force
Einstein–Laub	$\boldsymbol{T}_{\mathrm{m}}^{\mathrm{E}} = \boldsymbol{B} \otimes \boldsymbol{H} - \frac{\mu_{0}}{2} H^{2} \boldsymbol{I}$	$\boldsymbol{f}_{\mathrm{m}}^{\mathrm{E}} = \mu_{0} \boldsymbol{M} \cdot \nabla \boldsymbol{H}$
Minkowski	$\boldsymbol{T}_{\mathrm{m}}^{\mathrm{M}} = \boldsymbol{B} \otimes \boldsymbol{H} - \frac{1}{2} (\boldsymbol{B} \cdot \boldsymbol{H}) \boldsymbol{I}$	$\boldsymbol{f}_{\mathrm{m}}^{\mathrm{M}} = \boldsymbol{B} \cdot \nabla \boldsymbol{H} - \frac{1}{2} \nabla (\boldsymbol{B} \cdot \boldsymbol{H})$

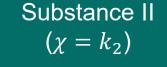
* *H* is the *magnetic field intensity* and *M* is the *magnetization intensity*, satisfying $B = \mu_0 (H + M)$

> f_m^E is called the *Kelvin force*, while f_m^M is called the *Helmholtz force*

Totally Different!

- Assume that the magnetic substances in the system are all linear, isotropic: $M = \chi H$
 - χ is called the *magnetic susceptibility*, constant within each substance
 - Kelvin force vs. Helmholtz force
 - $\boldsymbol{f}_{\mathrm{m}}^{\mathrm{E}} = \frac{\mu_0}{2} \chi \nabla(H^2)$
 - Compatible with the Lagrangian view
 - Let $\chi_i = k_1$ if Particle *i* belongs to Substance I and $\chi_i = k_2$ if Particle *i* belongs to Substance II
 - The magnetic force exerted on Particle *i* is $\frac{\mu_0}{2}\chi_i\nabla(H^2)$
 - These are what related works adopted
 - $\boldsymbol{f}_{\mathrm{m}}^{\mathrm{M}} = -\frac{\mu_{0}}{2}H^{2}\nabla\chi$
 - Only on the interface!





* k_1 and k_2 are both constants

- Take fluid simulation as an example
 - Need solving the pressure to enforce incompressibility
 - $\nabla \cdot [\rho u + (f \nabla p) dt] = 0$
 - $-\rho u$ is the advected momentum density
 - BC: p = 0 outside the fluid
 - Provided that there is an external force f'
 - $f' = \nabla \Phi$, satisfying $\Phi = 0$ outside the fluid
 - Theorem: f' does not influence the motion
 - $p^* = p + \Phi$ is a new solution of the pressure
 - $\nabla \cdot [\rho u + (\boldsymbol{f} + \boldsymbol{f}' \nabla p^*) \mathrm{d}t] = 0$
 - $p^* = 0$, outside the fluid
 - The total force leaves the same

$$- \boldsymbol{f} - \nabla \boldsymbol{p} = \boldsymbol{f} + \boldsymbol{f}' - \nabla \boldsymbol{p}^*$$

Question: since the two forms are totally different, can they both be right?

$$\boldsymbol{f' = \boldsymbol{f}_{\mathrm{m}}^{\mathrm{E}} - \boldsymbol{f}_{\mathrm{m}}^{\mathrm{M}} = \nabla\left(\frac{\chi\mu_{0}H^{2}}{2}\right)}$$

- $-f_{\rm m}^{\rm E}$ and $f_{\rm m}^{\rm M}$ are indistinguishable in effect
- The essence of the A–M controversy
 - How to divide physical quantities between ferromagnetic system and mechanical system

Ferromagnetic	Undecided	Mechanical
force	<i>f</i> ′	force

PHYSICAL MODELING

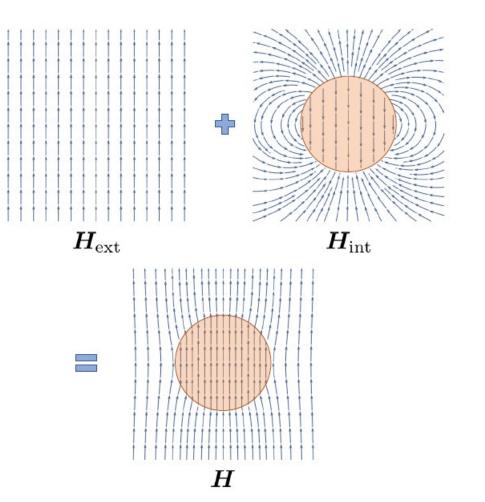
- Eulerian view & Helmholtz force
 - Capture the surface accurately by the level-set
 - Reduce $f_{\rm m}$ from 3D to 2D
- Four-step interaction
 - Magnetization
 - H_{ext} magnetizes the immersed magnetic substance
 - According to its current shape and position
 - Induction
 - **H**_{int} is induced
 - $H = H_{\text{ext}} + H_{\text{int}}$
 - Exertion
 - Apply the magnetic force $f_{\rm m} = f_{\rm m}^{\rm M}$
 - Reshaping
 - The state of the physical system is updated

* Simultaneously and repeatedly

© 2020 SIGGRAPH. ALL RIGHTS RESERVED.

PHYSICAL MODELING

- Magnetization & induction
 - Solve for \pmb{H}_{int} based on \pmb{H}_{ext} and χ
 - Governed by Maxwell's equations
 - $\nabla \cdot \boldsymbol{B} = 0$
 - $\nabla \times \boldsymbol{H} = \boldsymbol{j}_{\mathrm{f}} + \frac{\partial \boldsymbol{D}}{\partial t}$
 - Equivalent to a Poisson's equation
 - $\nabla \cdot (1 + \chi) \nabla \psi = \nabla \cdot \chi \boldsymbol{H}_{ext}$
 - $H_{\text{int}} = -\nabla \psi$
 - (Discretized into a linear system)



PHYSICAL MODELING

Exertion

- The precise formula of Helmholtz force

•
$$\boldsymbol{f}_{\mathrm{m}} = \frac{\mu_0}{2} k \left[\boldsymbol{H}^2 + \frac{k^2}{4k+4} (\boldsymbol{H} \cdot \widehat{\boldsymbol{n}})^2 \right] \delta_{\Sigma}(\boldsymbol{r}) \widehat{\boldsymbol{n}}$$

- δ_{Σ} is the generalized *Dirac delta function*
- $\widehat{\boldsymbol{n}}$ is the unit normal vector on the interface
- Derived by taking the weak form of δ_{Σ}
- Refer to the paper for details
- Always perpendicular to the interface

Reshaping

- For fluids (with surface tension)

•
$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) = -\nabla p + \rho \boldsymbol{g} + \boldsymbol{f}_{\mathrm{m}} - \sigma \kappa \boldsymbol{\hat{n}}$$

- $\nabla \cdot \boldsymbol{u} = 0$
- For elastic bodies

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) = \nabla \cdot \boldsymbol{\sigma} + \rho \boldsymbol{g} + \boldsymbol{f}_{\mathrm{m}}$$

For rigid bodies

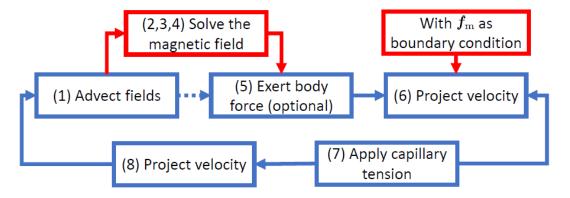
•
$$m_{\rho} \frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}t} = m_{\rho}\boldsymbol{g} + \oiint_{\Omega}\boldsymbol{f}_{\mathrm{m}}\mathrm{d}V$$

• $\boldsymbol{I}_{\rho} \frac{\mathrm{D}\boldsymbol{\omega}}{\mathrm{D}t} + \boldsymbol{\omega} \times (\boldsymbol{I}_{\rho} \cdot \boldsymbol{\omega}) = \oiint_{\Omega}(\boldsymbol{d} \times \boldsymbol{f}_{\mathrm{m}})\mathrm{d}V$

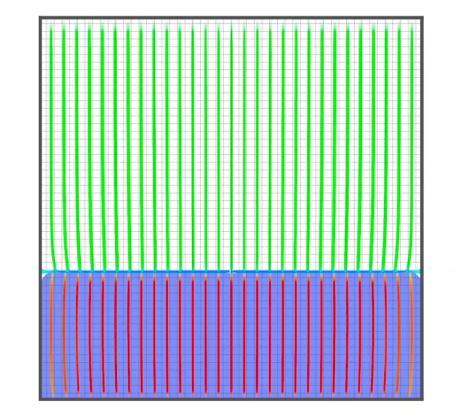
NUMERICAL SCHEME

- Solve the magnetic field (a linear system)
 - Conjugate gradient method
 - Multi-grid preconditioned
- Exert the magnetic force
 - For fluids
 - Treat the interfacial Helmholtz force as pressure jump
 - Young-Laplace Equation
 - $\boldsymbol{f}_{\mathrm{m}} \,\mathrm{d} \boldsymbol{V} = \Delta \boldsymbol{p} \,\mathrm{d} \boldsymbol{s}$
 - Involved as BC in projection step
 - For solids
 - Apply on surface triangles

* The pipeline sketch of ferrofluid simulation with new components painted red



SIMULATION RESULTS



Rosensweig instability (2D)

CONCLUSION

Summary

- The first versatile level-set method
- A novel computational approach
 - With interfacial Helmholtz force introduced
- An efficient numerical scheme
- Limitations
 - Explicit magnetic force
 - Potential numerical instability
 - Weak coupling
- Future work
 - Boundary element method
 - Apply Helmholtz force implicitly

Thank you for listening!

© 2020 SIGGRAPH. ALL RIGHTS RESERVED.