SIGGRAPH THINK 2020 19-23 JULY WASHINGTON DC

FAST AND SCALABLE TURBULENT FLOW SIMULATION WITH TWO-WAY COUPLING WEI LI¹ YIXIN CHEN¹ MATHIEU DESBRUN^{1,2} CHANGXI ZHENG³ XIAOPEI LIU¹

1.ShanghaiTech University

2. California Institute of Technology

3.Columbia University

Large-scale simulation

Capture turbulence

Two-way coupling

Feature film special effects

- Computer games
- Medicine (e.g. blood flow in heart)
- Designing aircraft, ship, train...
- Turbulence study

Applications

Incompressible Navier-Stokes (N-S) equations

Compute pressure *p* by Poisson equation

$$\nabla^2 p = \rho(\nu \nabla \cdot \nabla^2 \boldsymbol{u} - \nabla \cdot (\boldsymbol{u} \cdot \nabla \boldsymbol{u})) + \nabla \cdot \boldsymbol{F}$$

Fluid flow simulations

Related work

- Grid-based

- Mesh-based
- Particle-based
- Hybrid methods
- Data-driven approaches

Reflection-advection solver Zehnder et al. SIG '18

PolyPIC

Fu et al. SIG '17

BiMocq² Solver Qu et al. SIG '19 **Tetrahedral Meshes** Ando et al. SIG '13

Xie et al. SIG '18

Implicit SPH method Peer et al. SIG '15

Vorticity-based

Zhang et al. SIG '15

Fluid-solid coupling

Ę

Boundary forces

Mutual interaction

Related work

Fluid-solid coupling

- Voxelized boundaries
- Hybrid grid-particle methods
- Cut-cell based

Eulerian Solid-Fluid Coupling Teng et al. SIG '16

Scalable Laplacian Eigenfluids Cui et al. SIG '18

Cut-cell method Azevedo et al. SIG '16

BiMocq² Solver Qu et al. SIG '19

Moving least squares MPM Hu et al. SIG '16

Ę

Related work

Macroscopic model

Well-known macroscopic model

- Incompressible Navier-Stokes (N-S) equations
- Non-linear advection

F

- Solving Poisson equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} = -\frac{1}{\rho} \nabla p + v \nabla \cdot \nabla \boldsymbol{u} + \boldsymbol{F}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

Different scales to describe flow

Navier-Stokes (N-S) equations

Boltzmann transport equation

Molecular dynamics

Ē

Introducing a mesoscopic description of fluid

- Particle distribution function:

 $f(\boldsymbol{x}, \boldsymbol{v}, t)$

Introducing a mesoscopic description of fluid

- Particle distribution function:
- Macroscopic quantities (moments)

Density

$$\rho = \int f d\mathbf{v}$$

 $f(\boldsymbol{x},\boldsymbol{v},t)$

dy

Zero order moment

Velocity

$$\rho \boldsymbol{u} = \int \boldsymbol{v} f d\boldsymbol{v}$$

 $p = \frac{1}{3} \int \|\boldsymbol{v} - \boldsymbol{u}\|_2^2 f d\boldsymbol{v}$

First order moment

Ę

Introducing a mesoscopic description of fluid

Particle distribution function:

 $f(\boldsymbol{x}, \boldsymbol{v}, t)$

- Boltzmann transport equation:

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla f = \Omega(f) + \boldsymbol{F} \cdot \nabla_{\boldsymbol{v}} f$$

Ę

dy

Introducing a mesoscopic description of fluid

- Boltzmann transport equation:

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla f = \Omega(f) + \boldsymbol{F} \cdot \nabla_{\boldsymbol{v}} f$$

Introducing a mesoscopic description of fluid

Collision modeling

 $\int \Omega \, d\boldsymbol{v} = 0$ $\int \boldsymbol{v} \Omega \, d\boldsymbol{v} = 0$

BGK model $\boldsymbol{\Omega} = -\frac{1}{\tau}(\boldsymbol{f} - \overline{\boldsymbol{f}})$

 $\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla f = \Omega(f) + \boldsymbol{F} \cdot \nabla_{\boldsymbol{v}} f$

Equilibrium distribution

$$\bar{f}(\rho, \boldsymbol{u}) = \frac{\rho}{(2\pi)^{D/2}} \exp\left(-\frac{\|\boldsymbol{v} - \boldsymbol{u}\|_2^2}{2}\right)$$

Relation between Boltzmann equation and N-S equation

$$\int \frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla f \, d\boldsymbol{v} = \int \boldsymbol{\Omega}(f) + \boldsymbol{F} \cdot \nabla_{\boldsymbol{v}} f \, d\boldsymbol{v} \qquad \int \boldsymbol{\Omega} \, d\boldsymbol{v} = 0$$

$$\rho = \int f \, d\boldsymbol{v}$$

$$\rho \boldsymbol{u} = \int \boldsymbol{v} f \, d\boldsymbol{v}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

Relation between Boltzmann equation and N-S equation

Ē

Solve Boltzmann transport equation

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla f = -\frac{1}{\tau} (\boldsymbol{f} - \overline{\boldsymbol{f}}) + \boldsymbol{F} \cdot \nabla_{\boldsymbol{v}} f$$

Hard to solve $\rho = \int f dv$ $\rho u = \int v f dv$ $p = \frac{1}{3} \int ||v - u||_2^2 f dv$ $f(\boldsymbol{x},\boldsymbol{v},t)$

• How calculate the moment: the integrals ?

$$\rho = \int f d\boldsymbol{v} \qquad \rho \boldsymbol{u} = \int \boldsymbol{v} f d\boldsymbol{v}$$

• Gaussian quadrature: approximate integrals by sums

• Hermite series expansions

$$f(\boldsymbol{v},\boldsymbol{x},t) = \omega(\boldsymbol{v}) \sum_{n=0}^{\infty} \frac{1}{n!} \mathbf{a}^{(n)}(\boldsymbol{x},t) : \mathbf{H}^{(n)}(\boldsymbol{v}) .$$

$$\mathbf{a}^{(n)}(\mathbf{x},t) = \int \frac{f(\mathbf{v},\mathbf{x},t)}{\omega(\mathbf{v})} \mathbf{H}^{(n)}(\mathbf{v}) d\mathbf{v}$$

$$\mathbf{a}^{(0)} = \rho$$
, $\mathbf{a}^{(1)} = \rho \boldsymbol{u}$, and $\mathbf{a}^{(2)} = \boldsymbol{\Pi} - \rho \boldsymbol{I}$.

Equilibrium distribution

$$\bar{f}(\rho, \boldsymbol{u}) = \frac{\rho}{(2\pi)^{D/2}} \exp\left(-\frac{\|\boldsymbol{v} - \boldsymbol{u}\|_2^2}{2}\right)$$
$$\bar{f}_i(\rho, \boldsymbol{u}) \approx w_i \rho \left(1 + \frac{\boldsymbol{c}_i \cdot \boldsymbol{u}}{c_s^2} + \frac{(\boldsymbol{c}_i \cdot \boldsymbol{u})^2}{2c_s^4} - \frac{\boldsymbol{u} \cdot \boldsymbol{u}}{2c_s^2}\right)$$

• Discretization in mesoscopic velocity space

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \nabla f = -\frac{1}{\tau} (\boldsymbol{f} - \overline{\boldsymbol{f}}) + \boldsymbol{F} \cdot \nabla_{\boldsymbol{v}} f$$
$$\frac{\partial f_i}{\partial t} + \boldsymbol{v}_i \cdot \nabla f_i = -\frac{1}{\tau} (f_i - \overline{f_i}) + \boldsymbol{F} \cdot \nabla_{\boldsymbol{v}} f_i$$

Second-order accurate and explicit numerical scheme

$$\frac{\partial f_i}{\partial t} + \boldsymbol{v}_i \cdot \nabla f_i = -\frac{1}{\tau} (f_i - \overline{f_i}) + \boldsymbol{F} \cdot \nabla_{\boldsymbol{v}} f_i \qquad \Delta \boldsymbol{x} = \boldsymbol{c}_i \Delta t$$

$$Trapezoidal rule \qquad \qquad \text{implicit scheme}$$

$$Crank-Nicolson method \qquad \qquad \text{implicit scheme}$$

$$Change of variables \qquad \qquad \qquad \text{explicit scheme}$$

$$f_i(\boldsymbol{x} + \boldsymbol{c}_i, t + 1) - f_i(\boldsymbol{x}, t) = -\frac{1}{\tau} (f_i(\boldsymbol{x}, t) - \overline{f_i}(\boldsymbol{x}, t)) + (1 - \frac{1}{2\tau})F_i$$

$$\Delta \boldsymbol{x} = \Delta t = 1$$

F

Second-order accurate and explicit numerical scheme

Discrete velocity space

Discrete velocity and position space

Lattice Boltzmann method (LBM)

Ę

- Discretization and time update of distributions:

$$f_i(\mathbf{x} + \mathbf{c}_i, t + 1) - f_i(\mathbf{x}, t) = -\frac{1}{\tau} (f_i(\mathbf{x}, t) - \overline{f_i}(\mathbf{x}, t)) + (1 - \frac{1}{2\tau})F_i$$

Lattice Boltzmann method (LBM)

- Discretization and time update of distributions:

 $f_i(\boldsymbol{x} + \boldsymbol{c_i}, t + 1) - f_i(\boldsymbol{x}, t) = \Omega_i + F_i$

- Streaming step:

$$f_i(\boldsymbol{x} + \boldsymbol{c_i}, t + 1) = f_i(\boldsymbol{x}, t)$$

Lattice Boltzmann method (LBM)

- Discretization and time update of distributions:

 $f_i(\boldsymbol{x} + \boldsymbol{c_i}, t + 1) - f_i(\boldsymbol{x}, t) = \Omega_i + F_i$

- Streaming step:

Ę

$$f_i(\boldsymbol{x} + \boldsymbol{c_i}, t + 1) = f_i(\boldsymbol{x}, t)$$

- Collision step (e.g., lattice BGK model):

$$\Omega_i = -\frac{1}{\tau} (f_i(\boldsymbol{x}, t) - \overline{f_i}(\boldsymbol{x}, t))$$

Lattice Boltzmann method (LBM)

- Discretization and time update of distributions:

 $f_i(\boldsymbol{x} + \boldsymbol{c_i}, t + 1) - f_i(\boldsymbol{x}, t) = \Omega_i + F_i$

- Streaming step:

Ę

$$f_i(\boldsymbol{x} + \boldsymbol{c_i}, t + 1) = f_i(\boldsymbol{x}, t)$$

- Collision step (e.g., lattice BGK model):

$$\Omega_i = -\frac{1}{\tau} (f_i(\boldsymbol{x}, t) - \overline{f_i}(\boldsymbol{x}, t))$$

- Macroscopic quantities still from moments!

$$\rho(\mathbf{x},t) \equiv \sum_{i=0}^{q-1} f_i(\mathbf{x},t) \qquad \mathbf{u}(\mathbf{x},t) \equiv \frac{1}{\rho(\mathbf{x},t)} \left(\sum_{i=0}^{q-1} c_i f_i(\mathbf{x},t) + \frac{1}{2} \mathbf{F} \right)$$

Lattice Boltzmann method (LBM)

- Discretization and time update of distributions:

 $f_i(\boldsymbol{x} + \boldsymbol{c_i}, t + 1) - f_i(\boldsymbol{x}, t) = \Omega_i + F_i$

- Streaming step:

Support small Δt naturally!

- Collision step (e.g., lattice BGK model):

$$\Omega_i = -\frac{1}{\tau} (f_i(\boldsymbol{x}, t) - \overline{f_i}(\boldsymbol{x}, t))$$

- Macroscopic quantities still from moments!

$$\rho(\boldsymbol{x},t) \equiv \sum_{i=0}^{q-1} f_i(\boldsymbol{x},t)$$

$$\boldsymbol{u}(\boldsymbol{x},t) \equiv \frac{1}{\rho(\boldsymbol{x},t)} \left(\sum_{i=0}^{q-1} \boldsymbol{c}_i f_i(\boldsymbol{x},t) + \frac{1}{2} \boldsymbol{F} \right)$$

Collision modeling

- Distribution space single-relaxation time model
 - Lattice BGK model

$$\mathbf{\Omega} = -\frac{1}{\tau}(\mathbf{f} - \overline{\mathbf{f}})$$

 $\frac{1}{\tau} = 3\nu + \frac{1}{2}$

Collision modeling

• Moment space multi-relaxation time model

- Moment: measure a distribution in statistics

linear combination of $c_{i,a}^{\ \alpha} c_{i,b}^{\ \beta} c_{i,c}^{\ \gamma}$ $a, b, c \in \{x, y, z\}$ $\alpha, \beta, \gamma \in \{0, 1, 2\}$

Collision modeling

Moment space multi-relaxation time model

- Central-moment multi-relaxation time model (CM-MRT)

 $\mathbf{K} = \{k_0, \dots, k_q\} = \mathbf{M}\mathbf{f}$ $\mathbf{\Omega} = -\mathbf{M}^{-1}\mathbf{R}\mathbf{M}(\mathbf{f} - \overline{\mathbf{f}})$

linear combination of $(c_{i,a} - u)^{\alpha}(c_{i,b} - u)^{\beta}(c_{i,c} - u)^{\gamma}$ Ensure Galilean invariance

$$a, b, c \in \{x, y, z\}$$

 $\alpha, \beta, v \in \{0, 1, 2\}$
Collision modeling

Central-moment multi-relaxation time model (CM-MRT)

$$\Omega = -\mathbf{M}^{-1}\mathbf{R}\mathbf{M}(f-\bar{f}) = \mathbf{M}^{-1}\mathbf{R}(\mathbf{m}-\bar{m})$$

Kinetic methods

- Lattice BGK model
- Raw-moment MRT
- Central-moment MRT

Thuerey et al. VMV'04 Thuerey et al. VMV'06

Guo et al. TVCG '17

Liu et al. TVCG '14

Li et al. TVCG '19

Li et al. TVCG '20

Related work

Ē

Kinetic methods

- Lattice BGK model
- Raw-moment MRT
- Central-moment MRT

Inaccurate collision model for turbulent flows!

Thuerey et al. VIVIV 04 Thuerey et al. VIVIV 06 Guo et al. TVCG '17

Liu et al. TVCG '14

Li et al. TVCG '19

Li et al. TVCG '20

Ę

Low-dissipation and low-dispersion fluid solver

- High-order model
- Evaluate high-order relaxation times
- A linear regression to estimate relaxation times

Turbulent fluid with two-way coupling

- Immersed boundary method
- Calibration between physical and LBM units

Low-dissipation & low-dispersion fluid solver

High-order hermit expansion

Ę

$$\bar{f}_i(\rho, \boldsymbol{u}) \approx w_i \rho \left(1 + \frac{\boldsymbol{c}_i \cdot \boldsymbol{u}}{\boldsymbol{c}_s^2} + \frac{(\boldsymbol{c}_i \cdot \boldsymbol{u})^2}{2\boldsymbol{c}_s^4} - \frac{\boldsymbol{u} \cdot \boldsymbol{u}}{2\boldsymbol{c}_s^2} \right)$$

$$\begin{split} \bar{f}_{i} \approx &w_{i}\rho\left[1 + \frac{c_{i} \cdot u}{c_{s}^{2}} + \frac{1}{2c_{s}^{4}}\mathbf{H}^{(2)}(c_{i}) : u \otimes u \right. \\ &+ \frac{1}{2c_{s}^{6}}\left(\mathbf{H}_{ixxy}^{(3)}u_{x}^{2}u_{y} + \mathbf{H}_{ixxz}^{(3)}u_{x}^{2}u_{z} + \mathbf{H}_{ixyy}^{(3)}u_{x}u_{y}^{2} \right. \\ &+ \mathbf{H}_{ixzz}^{(3)}u_{x}u_{z}^{2} + \mathbf{H}_{iyzz}^{(3)}u_{y}u_{z}^{2} + \mathbf{H}_{iyzz}^{(3)}u_{y}^{2}u_{z} + \mathbf{H}_{ixyz}^{(3)}u_{x}u_{y}u_{z}\right) \\ &+ \frac{1}{4c_{s}^{8}}\left[\mathbf{H}_{ixxyy}^{(4)}u_{x}^{2}u_{y}^{2} + \mathbf{H}_{ixxzz}^{(4)}u_{x}^{2}u_{z}^{2} + \mathbf{H}_{iyyzz}^{(4)}u_{y}^{2}u_{z}^{2} \right. \\ &+ 2\left(\mathbf{H}_{ixyzz}^{(4)}u_{x}u_{y}u_{z}^{2} + \mathbf{H}_{ixyyz}^{(4)}u_{x}u_{y}^{2}u_{z} + \mathbf{H}_{ixxyz}^{(4)}u_{x}^{2}u_{y}^{2}u_{z}^{2} \right. \\ &+ \frac{1}{4c_{s}^{10}}\left(\mathbf{H}_{ixxyzz}^{(5)}u_{x}^{2}u_{y}u_{z}^{2} + \mathbf{H}_{ixxyyz}^{(5)}u_{x}^{2}u_{y}^{2}u_{z}^{2} \right. \\ &+ \left.\mathbf{H}_{ixyyzz}^{(5)}u_{x}u_{y}^{2}u_{z}^{2}\right) + \frac{1}{8c_{s}^{12}}\mathbf{H}_{ixxyyzz}^{(6)}u_{x}^{2}u_{y}^{2}u_{z}^{2} \right]. \end{split}$$

42

Low-dissipation & low-dispersion fluid solver

High-order hermit expansion

Ę

$$\begin{split} \mathbf{\tilde{f}_{i}} \approx & w_{i}\rho\left[1 + \frac{\mathbf{c}_{i} \cdot \mathbf{u}}{c_{s}^{2}} + \frac{1}{2c_{s}^{4}}\mathbf{H}^{(2)}(\mathbf{c}_{i}) : \mathbf{u} \otimes \mathbf{u} \\ & + \frac{1}{2c_{s}^{6}}\left(\mathbf{H}_{ixxy}^{(3)}u_{x}^{2}u_{y} + \mathbf{H}_{ixxz}^{(3)}u_{x}^{2}u_{z} + \mathbf{H}_{ixyy}^{(3)}u_{x}u_{y}^{2} \\ & + \mathbf{H}_{ixzz}^{(3)}u_{x}u_{z}^{2} + \mathbf{H}_{iyzz}^{(3)}u_{y}u_{z}^{2} + \mathbf{H}_{iyzz}^{(3)}u_{y}^{2}u_{z} + \mathbf{H}_{ixyyz}^{(3)}u_{x}u_{y}u_{z}\right) \\ & + \frac{1}{4c_{s}^{8}}\left[\mathbf{H}_{ixxyy}^{(4)}u_{x}^{2}u_{y}^{2} + \mathbf{H}_{ixxzz}^{(4)}u_{x}^{2}u_{z}^{2} + \mathbf{H}_{iyyzz}^{(4)}u_{z}^{2}u_{z}^{2} \\ & + 2\left(\mathbf{H}_{ixyzz}^{(4)}u_{x}u_{y}u_{z}^{2} + \mathbf{H}_{ixyyz}^{(4)}u_{x}u_{y}^{2}u_{z} + \mathbf{H}_{ixxyz}^{(4)}u_{z}^{2}u_{z$$

$$q_0 = q_9 = \rho, \ q_{17} = \rho c_s^2,$$

 $q_{18} = \rho c_s^4, \ \text{and} \ q_{26} = \rho c_s^6$

Low-dissipation & low-dispersion fluid solver

High-order hermit expansion

Ę

$$F_i = \mathbf{F} \cdot \nabla_{\mathbf{c}_i} f_i \approx \mathbf{F} \cdot \nabla_{\mathbf{c}_i} \bar{f_i} = (1 - \frac{1}{2\tau}) w_i \left(\frac{\mathbf{c}_i - \mathbf{u}}{c_s^2} + \frac{\mathbf{c}_i \cdot \mathbf{u}}{c_s^4} \mathbf{c}_i \right) \cdot \mathbf{F}$$

$$\begin{split} F_{i} &= w_{i}\rho(\frac{g \cdot c_{i}}{c_{s}^{2}} + \frac{1}{2c_{s}^{4}}[\mathbf{H}_{ixx}^{(2)}(2u_{x}g_{x}) + \mathbf{H}_{iyy}^{(2)}(2u_{y}g_{y}) + \mathbf{H}_{izz}^{(2)}(2u_{z}g_{z}) \\ &+ 2\mathbf{H}_{ixy}^{(2)}(u_{x}g_{y} + u_{y}g_{x}) + 2\mathbf{H}_{ixz}^{(2)}(u_{x}g_{z} + u_{z}g_{x}) \\ &+ 2\mathbf{H}_{iyz}^{(2)}(u_{y}g_{z} + u_{z}g_{y})] + \frac{1}{2c_{s}^{6}}[\mathbf{H}_{ixxy}^{(3)}(2u_{x}u_{y}g_{x} + u_{x}^{2}g_{y}) \\ &+ \mathbf{H}_{ixxz}^{(3)}(2u_{x}u_{z}g_{x} + u_{x}^{2}g_{z}) + \mathbf{H}_{ixyy}^{(3)}(2u_{x}u_{y}g_{y} + u_{y}^{2}g_{x}) \\ &+ \mathbf{H}_{ixzz}^{(3)}(2u_{x}u_{z}g_{z} + u_{z}^{2}g_{x}) + \mathbf{H}_{iyyz}^{(3)}(2u_{y}u_{z}g_{z} + u_{z}^{2}g_{y}) \\ &+ \mathbf{H}_{ixyz}^{(3)}(2u_{y}u_{z}g_{y} + u_{y}^{2}g_{z}) + 2\mathbf{H}_{ixyy}^{(3)}(2u_{y}u_{z}g_{z} + u_{z}^{2}g_{y}) \\ &+ \mathbf{H}_{iyyz}^{(3)}(2u_{y}u_{z}g_{y} + u_{y}^{2}g_{z}) + 2\mathbf{H}_{ixyz}^{(3)}(u_{x}u_{y}g_{z} + u_{x}g_{y}u_{z} + g_{x}u_{y}u_{z})] \\ &+ \frac{1}{4c_{s}^{8}}[\mathbf{H}_{ixxyy}^{(4)}(2u_{x}^{2}u_{y}g_{y} + 2u_{x}u_{y}^{2}g_{x}) + \mathbf{H}_{ixxzz}^{(4)}(2u_{x}^{2}u_{z}g_{z} + u_{x}g_{y}u_{z}^{2} + g_{x}u_{y}u_{z}^{2}) \\ &+ u_{x}g_{y}u_{z}^{2} + g_{x}u_{y}u_{z}^{2}) + 2\mathbf{H}_{ixyyz}^{(4)}(2u_{x}u_{y}u_{z}g_{y} + u_{x}u_{y}^{2}g_{z} + g_{x}u_{y}^{2}u_{z}) \\ &+ 2\mathbf{H}_{ixxyz}^{(4)}(2u_{x}u_{y}u_{z}g_{x} + u_{y}u_{x}^{2}g_{z} + u_{x}^{2}u_{z}g_{y})] \\ &+ \frac{1}{4c_{s}^{10}}[\mathbf{H}_{ixxyyz}^{(5)}(2u_{x}u_{y}^{2}u_{z}g_{x} + 2u_{x}^{2}u_{y}u_{z}g_{y} + u_{x}^{2}u_{y}^{2}g_{z}) \\ &+ \mathbf{H}_{ixxyz}^{(5)}(2u_{x}u_{y}u_{z}^{2}g_{x} + u_{x}^{2}u_{z}^{2}g_{y} + 2u_{x}^{2}u_{y}u_{z}g_{z}) \\ &+ \mathbf{H}_{ixyyz}^{(5)}(u_{y}^{2}u_{z}^{2}g_{x} + 2u_{x}u_{y}u_{z}^{2}g_{y} + 2u_{x}u_{y}^{2}u_{z}g_{z})] \\ &+ \frac{1}{8c_{s}^{12}}\mathbf{H}_{ixxyyz}^{(6)}(2u_{x}u_{y}^{2}u_{z}^{2}g_{x} + 2u_{x}^{2}u_{y}u_{z}^{2}g_{y} + 2u_{x}^{2}u_{y}^{2}u_{z}g_{z})]. \end{split}$$

$\tilde{\mathbb{F}}_1 = F_x, \qquad \tilde{\mathbb{F}}_2 = F_y, \qquad \tilde{\mathbb{F}}_3 = F_z,$

$\tilde{\mathbb{F}}_{10}=2c_s^2 F_x,$	$\tilde{\mathbb{F}}_{11} = 2c_s^2 F_y,$	$\tilde{\mathbb{F}}_{12} = 2c_s^2 F_z,$
$\tilde{\mathbb{F}}_{23} = c_s^4 F_x,$	$\tilde{\mathbb{F}}_{24} = c_s^4 F_y,$	$\tilde{\mathbb{F}}_{25} = c_s^4 F_z \; .$

Low-dissipation & low-dispersion fluid solver

High-order hermit expansion

 $F_{i} = w_{i}\rho(\frac{\boldsymbol{g}\cdot\boldsymbol{c}_{i}}{c_{z}^{2}} + \frac{1}{2c_{z}^{4}}[\mathbf{H}_{ixx}^{(2)}(2\boldsymbol{u}_{x}\boldsymbol{g}_{x}) + \mathbf{H}_{iyy}^{(2)}(2\boldsymbol{u}_{y}\boldsymbol{g}_{y}) + \mathbf{H}_{izz}^{(2)}(2\boldsymbol{u}_{z}\boldsymbol{g}_{z})$ + $2\mathbf{H}_{ixu}^{(2)}(u_x g_y + u_y g_x) + 2\mathbf{H}_{ixz}^{(2)}(u_x g_z + u_z g_x)$ + $2\mathbf{H}_{iyz}^{(2)}(u_yg_z + u_zg_y)$] + $\frac{1}{2c^6}$ [$\mathbf{H}_{ixxy}^{(3)}(2u_xu_yg_x + u_x^2g_y)$ $+ \mathbf{H}^{(3)}_{ixxz}(2u_xu_zg_x + u_x^2g_z) + \mathbf{H}^{(3)}_{ixyy}(2u_xu_yg_y + u_y^2g_x)$ + $\mathbf{H}_{ixzz}^{(3)}(2u_{x}u_{z}g_{z} + u_{z}^{2}g_{x}) + \mathbf{H}_{iyzz}^{(3)}(2u_{y}u_{z}g_{z} + u_{z}^{2}g_{y})$ + $\mathbf{H}_{i_{y}y_{z}}^{(3)}(2u_{y}u_{z}g_{y} + u_{y}^{2}g_{z}) + 2\mathbf{H}_{i_{x}y_{z}}^{(3)}(u_{x}u_{y}g_{z} + u_{x}g_{y}u_{z} + g_{x}u_{y}u_{z})]$ $+ \frac{1}{4c^8} [\mathbf{H}_{ixxyy}^{(4)}(2u_x^2 u_y g_y + 2u_x u_y^2 g_x) + \mathbf{H}_{ixxzz}^{(4)}(2u_x^2 u_z g_z +$ $2\boldsymbol{u}_{x}\boldsymbol{u}_{z}^{2}\boldsymbol{g}_{x})+\mathbf{H}_{iyyzz}^{(4)}(2\boldsymbol{u}_{y}^{2}\boldsymbol{u}_{z}\boldsymbol{g}_{z}+2\boldsymbol{u}_{y}\boldsymbol{u}_{z}^{2}\boldsymbol{g}_{y})+2\mathbf{H}_{ixyzz}^{(4)}(2\boldsymbol{u}_{x}\boldsymbol{u}_{y}\boldsymbol{u}_{z}\boldsymbol{g}_{z}$ $+ u_x g_y u_z^2 + g_x u_y u_z^2) + 2 \mathbf{H}^{(4)}_{ixyyz} (2 u_x u_y u_z g_y + u_x u_y^2 g_z + g_x u_y^2 u_z)$ + $2\mathbf{H}_{ixxyz}^{(4)}(2u_xu_yu_zg_x + u_yu_x^2g_z + u_x^2u_zg_y)]$ + $\frac{1}{4c_{z}^{10}}$ [$\mathbf{H}_{ixxyyz}^{(5)}(2u_{x}u_{y}^{2}u_{z}g_{x} + 2u_{x}^{2}u_{y}u_{z}g_{y} + u_{x}^{2}u_{y}^{2}g_{z})$ $+ \operatorname{\mathbf{H}}_{ixx\,uzz}^{(5)}(2u_{x}u_{y}u_{z}^{2}g_{x} + u_{x}^{2}u_{z}^{2}g_{y} + 2u_{x}^{2}u_{y}u_{z}g_{z})$ + $\mathbf{H}_{ix\,y\,uzz}^{(5)}(u_{y}^{2}u_{z}^{2}g_{x} + 2u_{x}u_{y}u_{z}^{2}g_{y} + 2u_{x}u_{y}^{2}u_{z}g_{z})]$ + $\frac{1}{8c^{12}}$ **H**⁽⁶⁾_{*ixxyyzz*}(2 $u_x u_y^2 u_z^2 g_x + 2u_x^2 u_y u_z^2 g_y + 2u_x^2 u_y^2 u_z F_z$)).

Low-dissipation & low-dispersion fluid solver

• How to determine high-order relaxation time τ^* ? $\Omega^* = \Omega(\tau^*)$

- Still an unsolved but very important problem

Effects of high-order relaxation rate

Small relaxation time

Large relaxation time

"Optimal" relaxation time

Low-dissipation & low-dispersion fluid solver

Measurement functional

Ę

- Dissipation or dispersion error results in larger fluid low-order moment variation

- Measure fluid variation in a time-step

$$\epsilon(\mathbf{x}_k, t) = \frac{\|\delta^t(\rho)_k\|}{\overline{\rho}} + \frac{\|\delta^t(\rho \mathbf{u})_k\|}{\|\overline{\rho}\mathbf{u}\|} + \frac{\|\delta^t(\Pi)_k\|}{\|\overline{\Pi}\|}$$

Measurement functional

$$\epsilon(\mathbf{x}_k, t) = \frac{\|\delta^t(\rho)_k\|}{\overline{\rho}} + \frac{\|\delta^t(\rho \mathbf{u})_k\|}{\|\overline{\rho}\mathbf{u}\|} + \frac{\|\delta^t(\Pi)_k\|}{\|\overline{\Pi}\|}$$

Measure the functional with different relaxation time τ^* in one time step

Measurement functional

Low-dissipation & low-dispersion fluid solver

• Numerical optimization of au^*

Ę

- Brute-force search to find optimal value
- Gradient decent optimization

One optimization step

One simulation time step

Many time steps

Very inefficient in practice !!!

Regression-based evaluation of local au^*

- Linear regression offers a simple and accurate estimate
 - Linear regression
 - Input state:

Ę

$$\mathbf{s}_{p} = (\rho_{p} / \overline{\|\rho\|}, \|\rho_{p}\mathbf{u}_{p}\| / \overline{\|\rho u\|}, \|\Pi_{p}\| / \overline{\|\Pi\|}, 1)$$

– Offline pre-computation: collect data (S_p and τ^*)

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \sum_{p} \left(\hat{\tau}_p^*(\boldsymbol{\theta}) - \tau_p^* \right)^2$$

 $\hat{\tau}_{p}^{*} \approx \theta^{I} \mathbf{s}_{p}$

Evaluating the resulting LBM solver

2D Taylor-Green vortex

Visualization of velocity and error magnitudes

2D vortex sheet simulation

2D vortex sheet simulation

Energy preservation

Ę

2D double layer vortex

Vorticity visualization

Ę

- MC+R NS solver with small Δt

 512×512

 1024×1024

2D double layer vortex

Vorticity visualization

Ē

MC+R NS solver (large Δt) Our solver (small Δt)

Turbulent flows with two-way coupling

Turbulent fluid with two-way coupling

Immersed boundary method

- Interpolation process

$$m_f(x_s) = \int m_f(x)\delta(x - x_s)dx$$
$$\approx \sum_{x_f \in \mathcal{D}_s} m_f(x_f)\bar{\delta}(x_f - x_s)\Delta v_s$$

$$\mathbb{F}_{f\to s}(\mathbf{x}_s) = \left(m_f(\mathbf{x}_s) - \rho v_s(\mathbf{x}_s) \right) / \mathbb{A}t$$

Turbulent fluid with two-way coupling

Immersed boundary method

- Spreading process

$$\begin{split} \mathbb{F}_{s \to f}(x_f) &= -\int \mathbb{F}_{f \to s}(x)\delta(x - x_f)dS \\ &= -\sum_{x_s \in \mathcal{D}_f} \mathbb{F}_{f \to s}(x_s)\bar{\delta}(x_s - x_f)\Delta s \end{split}$$

Coupling force in immersed boundary method

Turbulent fluid with two-way coupling

Dimensionless scaling in LBM space

- Stability velocity range: [0, 0.2]

- Set reference LBM velocity \mathcal{U}_{ref} = 0.2: maximize efficiency
- Reference Physical velocity u_{ref}

Outlined letter in LBM space Solid letter in physical space

Turbulent fluid with two-way coupling SIGGRAPH

Coupling force in immersed boundary method

- Physical space to LBM space:

Ę

Results

Comparisons

Efficiency vs. Accuracy (I)

MC+R Δt

MC+R $7\Delta t$

Efficiency vs. Accuracy (I)

MC+R Δt

MC+R $7\Delta t$

Efficiency vs. Accuracy (II)

For more discussions on computational timings, please see our paper.

Inaccurate coupling with thin solid structures

- Leakage problems in immersed boundary method

Memory usage is relatively larger than traditional N-S solver

- Three times larger than current high order solver
- Try to do spatial adaptive simulation in the future

∠Large-scale simulation

Scalable

∠ Turbulent flow

- Low-dissipation
- Low-dispersion

✓ Two-way coupling

Force evaluation

Thank you! Q&A