SIGGRAPH.ORG THINK BEVOND

IQ-MPM: AN INTERFACE QUADRATURE MATERIAL POINT METHOD FOR NON-STICKY STRONGLY TWO-WAY COUPLED NONLINEAR SOLIDS AND FLUID

Yu Fang, Ziyin Qu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul Aanjaneya, Chenfanfu Jiang

Challenge: free slip interface

- Lagrangian Solids and Eulerian Fluids [Chentanez et al. 2006] [Batty et al. 2007]
- Lagrangian Solids and Lagrangian Fluids [Solenthaler et al. 2007] [Muller et al. 2015]
- Eulerian Solids and Eulerian Fluids [Levin et al. 2011] [Teng et al. 2016]
- Hybrid Particle-Grid Methods [Hu et al. 2018] [Han et al. 2019]

Most of these works do not address strong two-way coupling of incompressible fluids with non-linear elastic solids without requiring multiple monolithic solves.

CORE IDEAS

$$\frac{\rho^{s,n}\mathbf{v}^{s,n+1}}{\Delta t} + \nabla p^{g,n+1} - h^{n+1}\mathbf{n}^{s,n} = \frac{\rho^{s,n}\mathbf{v}^{s,*}}{\Delta t}. \qquad \qquad \begin{aligned} \int_{\Omega^s} \frac{\rho^{s,n}q^s \cdot v^{s,n+1}}{\Delta t} dx + \int_{\Omega^s} q^s \cdot \nabla p^{g,n+1} dx & \mathbf{v}^{s,\{n,n+1\}}(\mathbf{x}) = \sum_i \mathbf{v}_i^{s,\{n,n+1\}} N_i^{s,2}(\mathbf{x}), \\ -\int_{\Gamma} q^s \cdot n^{s,n} h^{n+1} ds = \int_{\Omega^s} \frac{\rho^{s,n}q^s \cdot v^{s,*}}{\Delta t} dx & \mathbf{q}^s(\mathbf{x}) = \sum_j \mathbf{q}_j^s N_j^{s,2}(\mathbf{x}). \end{aligned}$$

BACKGROUND MPM.GRAPHICS

Material Point Method (MPM)

MPM Coupling Issues:

- Single grid: self-collision suffers from numerical stickiness
- Multiple grid: tangentially discontinuous velocity by using different grids is limited to explicit time integration

The Material Point Method for Simulating Continuum Materials, SIGGRAPH course notes, 2016.

On hybrid lagrangian-eulerian simulation methods: practical notes and high-performance aspects, SIGGRAPH course notes, 2019.

IQ-MPM METHOD

SPLITTING

Traditional Solid:

$$\Psi(F^s) = \Psi^s(F)$$

Arbitrary nonlinear hyper-elasticity supported: Fixed Corotated model [Stomakhin et al. 2012] Neo-Hookean model Saint Vernant-Kirchhoff model

• Solid with ghost matrix:

Similar to compressible air

$$\begin{split} \Psi(F^s,J^g) &= \Psi^s(F^s) + \Psi^g(J^g) \\ \Psi^g(J^g) &= \frac{1}{2} \lambda^J (J^g-1)^2 \\ \text{Half Lame's first parameter} \end{split}$$

GOVERNING EQUATIONS (GENERAL)

• For any phase k (fluid or solid):

$\frac{D\rho^k}{Dt} + \rho^k \nabla \cdot \mathbf{v}^k = 0,$	$\mathbf{x} \in \Omega^k$,	Mass conservation	<i>g</i> : gravity n^k : outward normal
$\rho^k \frac{D \mathbf{v}^k}{D t} - \nabla \cdot \sigma^k - \rho^k \mathbf{g} = 0,$	$\mathbf{x} \in \Omega^k$	Momentum conservation	Ω^k : solid/fluid domain ρ^k : density
$\sigma^k \cdot \mathbf{n}^k = \mathbf{b},$	$\mathbf{x} \in \partial \Omega_N^k$	Free surface	v^k :velocity σ^k : Cauchy stress
$\mathbf{v}^k \cdot \mathbf{n}^k = v_S^k,$	$\mathbf{x} \in \partial \Omega_{\mathrm{S}}^k$	Slip boundary	b : free surface bc y^k alia be
$\mathbf{v}^k = \mathbf{v}_{\rm NS}^k,$	$\mathbf{x} \in \partial \Omega_{NS}^k$	No-slip boundary	v_S^k : no-slip bc

- Automatic MPM coupling is inherently restricted to sticky and no-slip interactions
- To allow free-slip boundary conditions, we add velocity and pressure continuity for solid and fluid interfaces

$$(\mathbf{v}^s - \mathbf{v}^f) \cdot \mathbf{n}^s = 0, \qquad \mathbf{x} \in \Gamma \qquad p^s - p^f = 0, \qquad \mathbf{x} \in \Gamma.$$

GOVERNING EQUATIONS (SOLID)

- Solid and ghost matrix share velocity $v^s = v^g$
- Coupling force is along normal direction $f^{f_{s,n+1}} = h^{n+1}n^{s,n}$

SPLITTING SOLVE

$$\frac{\rho^{s,n}v^{s,*}}{\Delta t} - \nabla \cdot \sigma^{s,*} = \frac{\rho^{s,n}v^{s,n}}{\Delta t}$$

• Fully nonlinear Newton solve

$$\frac{\rho^{s,n}v^{s,n+1}}{\Delta t} + \nabla p^{g,n+1} - h^{n+1}n^{s,n} = \frac{\rho^{s,n}v^{s,*}}{\Delta t}$$

- Linear system coupled with fluid
- Solve pressure first and substitute them back

GOVERNING EQUATIONS (FLUID)

Density does not change over time for incompressible fluid

$$\frac{\rho^{f} v^{f,n+1}}{\Delta t} + \nabla p^{f,n+1} = \frac{\rho^{f} v^{f,n}}{\Delta t} + f^{sf,n+1} + f^{w,n+1}$$
$$\nabla \cdot v^{f,n+1} = 0$$

Divergence free condition

- Fluid touches slip boundary walls by constraints $v^{f,n+1}|_{\partial\Omega^f_S}\cdot n^f=v^f_S$
- Coupling force is also along normal direction
- Incompressibility is assuming that $\lambda=\infty$

WEAK FORM

MPM Limitation

Solid velocity order ≥ 1

- Prevent the cell-crossing instability
- Use **B-spline** to eliminate nonnegative cases

Computational Limitation

Stability Limitation

Any order ≤ 2

• Reduce kernel size and achieve efficiency

velocity order > pressure order

- Prevent kinetic locking
- Satisfy inf-sup stability
- Avoid null space in velocity-pressure system

DISCRETIZATION I

$$\frac{B\{v^{s}\}B\{p^{s}\}}{B\{p^{s}\}} - B\{h\} - \frac{B\{v^{f}\}B\{p^{f}\}}{B\{p^{f}\}}$$

- Solid's velocity and pressure order
- Solid-fluid coupling pressure order
 - Fluid's velocity and pressure order

B2B1 - B1 - B2B1

B2B0 - B0 - B1B0

DISCRETIZATION II

DISCRETIZATION II

fluid particle

interface search radius

interface fluid volume quadrature

oriented interface quadrature

Methods	Efficiency	Accuracy	DoF consistency
Particles quadrature	Good	Bad	Bad
Cut cell + analytical integration	Bad	Good	Bad
Interface quadrature	Good	Good	Good

GHOST MATRIX UPDATE J^g

B2B1-B1-B2B1

$$p^{s,n+1} = -\lambda(J^{g,n+1} - 1)$$
$$J^{g,n+1} = \det(F^{s,n+1})$$
$$J^{g,n+1} = (1 + \Delta t(\nabla \cdot v^{n+1})(x_p))J^{g,n}_p$$

B2B0-B0-B1B0

- Discontinuous pressure and high order velocity in inconsistency
- Derived from weak form

All tests under B2B0-B0-B1B0

MORE RESULTS

Density = 200 kg/m^3

Density = 700 kg/m³

Density = 1200 kg/m^3

THANK YOU!