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Scharstein & Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV, 2002, 47, 7-42

Matching Cost Computation

Cost Aggregation

Disparity Computation

Disparity Refinement

• Distances: L1, L2
• Correlation: NCC，ZNCC
• Non-parametric measures: rank and census 

transforms

• Square window 
• Gaussian
• 3D aggregation
• Shiftable window

• Local methods: winner-take-all (WTA)
• Global methods: an energy minimization framework

• dynamic programming, max-flow and graph-cut
• cooperative algorithms

• Subpixel enhancement: iterative gradient descent, 
curve fitting

• Median filter
• Bilateral filter

0201 Supervised Stereo Matching
Related Work



DL for Depth Estimation
 Matching Cost Computation

 Žbontar & Lecun, CVPR 2015 & JMLR 2016

 Luo et al, CVPR 2016

 Shaked & Wolf, CVPR 2016
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 Shaked & Wolf, CVPR 2016

 3-In-1 CNN: for Matching Cost Computation, Cost 
aggregation, and Disparity Computation

 Mayer et al. CVPR 2016

 Kendall et al. CVPR 2017
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DL for Depth Estimation
 Matching Cost Computation

 Žbontar & Lecun, CVPR 2015 & JMLR 2016

 Luo et al, CVPR 2016

 Shaked & Wolf, CVPR 2016

 3-In-1 CNN: for Matching Cost Computation, Cost 
aggregation, and Disparity Computation

 Mayer et al. CVPR 2016

 Kendall et al. CVPR 2017

 Additional CNN for Disparity Refinement

 Gidaris & Komodakis, CVPR 2017

 Pang et al. ICCVW 2017
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Related Work



 All-In-One: Integrate All Steps of Stereo Matching into One Network

 Improve Accuracy

 Improve Efficiency

 Residual Learning: Integrate Disparity Refinement into CNN

 Traditional Methods

 left-right check: find correct, mismatched and occluded regions

 interpolation, sub-pixel enhancement, filtering

 hard to be modelled by CNN

 Residual Learning 

 use initial disparity            to reconstruct left image from right image 

Z. Liang, Y. Guo*, et al. Stereo Matching Using Multi-level Cost Volume and Multi-scale Feature Constancy. IEEE TPAMI 2019.

0201 Supervised Stereo Matching
Our work
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• The EPE can be significantly reduced with disparity refinement using feature correlation and 

reconstruction error

• Feature reconstruction error plays the major role in performance improvement

Z. Liang, Y. Guo*, et al. Stereo Matching Using Multi-level Cost Volume and Multi-scale Feature Constancy. IEEE TPAMI 2019.

0201 Supervised Stereo Matching
Results on SceneFlow



• The EPE can be significantly reduced with disparity refinement using feature correlation and 

reconstruction error

• Feature reconstruction error plays the major role in performance improvement

• Iterative refinement helps to further improve the performance

Z. Liang, Y. Guo*, et al. Stereo Matching Using Multi-level Cost Volume and Multi-scale Feature Constancy. IEEE TPAMI 2019.
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Z. Liang, Y. Guo*, et al. Stereo Matching Using Multi-level Cost Volume and Multi-scale Feature Constancy. IEEE TPAMI 2019.

0201 Supervised Stereo Matching
Results on KITTI 2015



0201 Supervised Stereo Matching
CVPR 2018 Robust Vision Challenge
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 Good Flexibility and Scalability to Different Disparities

Disparities between stereo images can vary significantly

 different baselines

 different focal lengths

 different depths

 different resolutions

 Low Computational and Memory Cost

0202 Unsupervised Stereo Correspondence Learning
Objectives



 PAM to Capture Stereo Correspondence

 Achieve global receptive field along the epipolar line to handle different 
stereo images with large disparity variations

 Improve efficiency

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020

0202 Unsupervised Stereo Correspondence Learning
Parallax-attention Module (PAM)



 Overview 

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020
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 Overview 

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020

0202 Unsupervised Stereo Correspondence Learning
Parallax-attention Module (PAM)

parallax-attention maps



 How PAM Works?

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020

0202 Unsupervised Stereo Correspondence Learning
Parallax-attention Module (PAM)
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 Geometry-Aware Matrix Multiplication as Warping

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020

0202 Unsupervised Stereo Correspondence Learning
Parallax-attention Module (PAM)
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 Loss Design

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020

0202 Unsupervised Stereo Correspondence Learning
Parallax-attention Module (PAM)

(1) Left-Right Consistency

(2) Cycle Consistency



 Stereo Matching Network 

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020

0202 Unsupervised Stereo Correspondence Learning
PAM for Unsupervised Stereo Matching (PASMnet)



 Comparison to stereo matching methods on KITTI 2015

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020

0202 Unsupervised Stereo Correspondence Learning
PAM for Unsupervised Stereo Matching (PASMnet)



 Stereo Super-Resolution Network 

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020

0202 Unsupervised Stereo Correspondence Learning
PAM for Stereo Image Super-Resolution (PASSRnet)
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 Comparative Results on Middlebury, KITTI 2012 and KITTI 2015

L. Wang, Y. Guo*, et al. Parallax Attention for Unsupervised Stereo Correspondence Learning. IEEE TPAMI, 2020
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Bicubic



0202 Unsupervised Stereo Correspondence Learning
PAM for Stereo Image Super-Resolution (PASSRnet)

StereoSR, CVPR 2018
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Our PASSRnet



0202 Unsupervised Stereo Correspondence Learning
PAM for Stereo Image Super-Resolution (PASSRnet)
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Credit: C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep learning on point sets for 3D classification and segmentation. CVPR 2017.

0203 Semantic Segmentation of Large-scale Point Clouds 
Task Definition
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Inconsistent predictions

Limitations of existing methods:
(1) Most approaches are limited to extremely small 3D point clouds (e.g. 1mx1m blocks with 4K points). 

PointNet (CVPR’17); PointNet++ (NeurIPS’17); PointCNN (NeurIPS’18); PCCN (CVPR’18); ShellNet (ICCV’19)

(2)  Few methods can directly process large-scale point clouds, but  they either rely on time-consuming preprocessing or 

expensive voxelization steps.  SPG (CVPR’18);  FCPN (ECCV’18); TagentConv (CVPR’18); PCT (ICIP’19)

floor table chair clutter window door bookcase

0203 Semantic Segmentation of Large-scale Point Clouds 
Motivation



（a） （b）
Increase the block size:

(1) PointNet only learn independent point features without considering local geometric relationships. The max-pooling operation 

used for capturing global features discards the majority of information from point features. 

(2) The inference time of PointNet++ increases dramatically for a larger number of points, since the computational complexity of 

farthest point sampling is quadratically related to the number of input points

0203 Semantic Segmentation of Large-scale Point Clouds 
Motivation



● Complex geometry: A large-scale point cloud usually contains dozens of object classes, 

hundreds of instances and millions of points.

● GPU Memory limitations: It is difficult to process a large-scale point cloud (million-scale 

points) in a single pass in todays’ GPUs.

● Variable and diverse : The spatial size and number of points of a point cloud acquired by 

real-world depth sensors can change significantly

 Difficulties of large-scale point cloud segmentation:

0203 Semantic Segmentation of Large-scale Point Clouds 
Motivation

Q. Hu et al. RandLA-Net: Efficient Semantic Segmentation of Large-scale Point Clouds. CVPR, Oral, 2020



● Accurate & Scalable

○ Capture and preserve the prominent features from complex geometric structures
○ Able to process input point clouds with different spatial size and number of points

● Computationally efficient & Memory efficient

○ Without time-consuming preprocessing or memory-cost voxelization steps
○ Inference a large-scale point cloud in a single pass

● Process large-scale point clouds directly

○ Without block partition and block merging
○ Keep the original geometry as much as possible

 Can we develop a method that is: 

0203 Semantic Segmentation of Large-scale Point Clouds 
Objectives

Q. Hu et al. RandLA-Net: Efficient Semantic Segmentation of Large-scale Point Clouds. CVPR, Oral, 2020
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Figure 2. In each layer of the network, the large-scale point cloud is significantly downsampled, yet 

is capable of retaining features necessary for accurate segmentation.

What we need:

 Efficient point sampling to reduce memory footprint and computational cost

 Effective local feature aggregation to capture the geometrical patterns

0203 Semantic Segmentation of Large-scale Point Clouds 
Overview

Q. Hu et al. RandLA-Net: Efficient Semantic Segmentation of Large-scale Point Clouds. CVPR, Oral, 2020



 FPS, IDIS and GS are too computationally expensive

 CRS approaches have an excessive memory footprint and PGS has extremely large 

exploration space

 Random sampling is by far the most suitable approach to process large-scale point 

clouds in terms of efficiency

 How to preserve useful features?

New question:

The quest for efficient sampling

0203 Semantic Segmentation of Large-scale Point Clouds 
Sampling

Q. Hu et al. RandLA-Net: Efficient Semantic Segmentation of Large-scale Point Clouds. CVPR, Oral, 2020



0203 Semantic Segmentation of Large-scale Point Clouds 
Local Feature Aggregation

Q. Hu et al. RandLA-Net: Efficient Semantic Segmentation of Large-scale Point Clouds. CVPR, Oral, 2020



Highlights:

(1) 3D encoder-decoder architecture with skip connections

(2) Four encoding and decoding layers + three fully-connected layers + dropout

(3) The down-sampling ratio is set to 4 in each layer;

0203 Semantic Segmentation of Large-scale Point Clouds 
Network Architecture

Q. Hu et al. RandLA-Net: Efficient Semantic Segmentation of Large-scale Point Clouds. CVPR, Oral, 2020



（b）（a）
Figure  5.  Time  and  memory  consumption  of  different  sampling approaches.   The 

dashed lines represent estimated values due to the limited GPU memory.

0203 Semantic Segmentation of Large-scale Point Clouds 
Efficiency of Random Sampling



Table 1. The computation time, network parameters and maximum number of input points

of different approaches for semantic segmentation on Sequence 08 of SemanticKITTI

dataset.

 Evaluate on real-world large-scale dataset (Sequences 08 of SemanticKITTI)

 4071 scans of point clouds in total, 81920 points from each scan were fed to each network

 All experiments conducted on a PC with an AMD 3700X @3.6GHz and an NVIDIA RTX2080Ti 

GPU

0203 Semantic Segmentation of Large-scale Point Clouds 
Efficiency of RandLA-Net



 15 point clouds for training and 15 for online testing, with more than 4 billion points

 8 semantic categories, both 3D coordinates and RGB information are available

 Covering up to 160×240×30 meters in real-world 3D space and up to 108 points

0203 Semantic Segmentation of Large-scale Point Clouds 
Evaluation on Semantic3D



 Sequential LiDAR point clouds, with 19 semantic categories

 19130 scans for training, 4071 scans for validation and 20351 scans for testing

 Only have 3D coordinates without color information

Point-based

Methods

Projection

Methods

03 Semantic Segmentation of Large-scale Point Clouds 
Evaluation on SemanticKITTI



03 Semantic Segmentation of Large-scale Point Clouds 
Evaluation on S3DIS



03 Semantic Segmentation of Large-scale Point Clouds 
Evaluation on S3DIS

Q. Hu et al. RandLA-Net: Efficient Semantic Segmentation of Large-scale Point Clouds. CVPR, Oral, 2020



03 Semantic Segmentation of Large-scale Point Clouds 
Evaluation on Semantic3D

Q. Hu et al. RandLA-Net: Efficient Semantic Segmentation of Large-scale Point Clouds. CVPR, Oral, 2020



Summary

Codes & Datasets

 Supervised Stereo Matching

 CVPR 2018, IEEE TPAMI 2019

 Codes: https://github.com/Gary66/iResNet

 Unsupervised Stereo Correspondence Learning

 CVPR 2019, IEEE TPAMI 2020

 Codes: https://github.com/Gary66/PASSRnet

 Flickr1024 Dataset: https://yingqianwang.github.io/Flickr1024

 Semantic Segmentation of Large-scale Point Clouds

 CVPR 2020 Oral

 Codes: https://github.com/Gary66/RandLA-Net

https://github.com/Gary66/iResNet
https://github.com/Gary66/PASSRnet
https://yingqianwang.github.io/Flickr1024
https://github.com/Gary66/RandLA-Net
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