3D Controllable Image Synthesis

Yiyi Liao

December 24, 2020

University of Tübingen MPI for Intelligent Systems

Autonomous Vision Group

Collaborators

Katja Schwarz

Lars Mescheder

Michael Niemeyer

Jun Xie

Andreas Geiger

Introducing Town10 A vibrant city with new assets to improve visual quality H

Can we learn a simulation tool from 2D images?

Liao*, Schwarz*, Mescheder, Geiger: Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis. CVPR, 2020

Goal

3D Controllable Image Synthesis

- Learning a generative image model
- With controllable 3D factors:
 - Object shape
 - Object appearance
 - Object pose
 - Camera viewpoint
- Learn from 2D observations (unposed images)
- No supervision (segmentation, bounding box, depth)

Classical Rendering Pipeline

3D factors can be controlled Expensive 3D content creation

2D Generative Models

Unsupervised learning from 2D images 3D factors cannot be controlled

Our approach

3D factors can be controlled Unsupervised learning from 2D images

Our approach

Idea: Learning the image generation process jointly in 3D and 2D space

- Foreground/background primitives: $\{\mathbf{o}_1, \dots, \mathbf{o}_N, \mathbf{o}_{bg}\}$, $\mathbf{o}_i = (\mathbf{R}_i, \mathbf{t}_i, \mathbf{s}_i, \phi_i)$
- Primitive type: point cloud, sphere, cuboid

- Sample camera viewpoint, render each primitive individually
- Obtain feature map X, alpha map A and depth map D

- Convert features to RGB pixel values
- Render to image via alpha composition (based on depth ordering)

Loss Functions

 $\mathcal{L}_{adversarial}(\theta, \psi, c) = \mathbb{E}_{p(\mathbf{z})}[f(d_{\psi}(g_{\theta}(\mathbf{z}, c), c))] + \mathbb{E}_{p_{\mathcal{D}}(\mathbf{I}|c)}[f(-d_{\psi}(\mathbf{I}, c))]$

Loss Functions

$$\mathcal{L}_{compactness}(\theta) = \mathbb{E}_{p(\mathbf{z})} \left[\sum_{i=1}^{N} \max\left(\tau, \frac{1}{P}\right) \right]$$

Loss Functions

$$\mathcal{L}_{geometric}(\theta) = \mathbb{E}_{p(\mathbf{z})} \left[\sum_{i=1}^{N} \|\mathbf{A}'_{i} \odot (\mathbf{X}'_{i} - \tilde{\mathbf{X}}'_{i})\|_{1} \right] + \mathbb{E}_{p(\mathbf{z})}$$

Datasets

Baselines

Layout2lm [Zhao et al., CVPR 2019]

- Only 2D translation control, requires
 2D bounding box supervision
- Fails to disentangle object identity and pose

Baselines

Ours 2D Replace 3D primitives with 2D primitives

Baselines

Ours 2D Replace 3D primitives with 2D primitives

• Only 2D translation control

Baselines

Ours 2D

Replace 3D primitives with 2D primitives

- Only 2D translation control
- Fails to disentangle rotation and translation

Ours: Object Translation

Ours: Object Rotation

Ours: Camera Rotation

Ours: Camera Rotation

Ours: Camera Rotation

Ours: Object Translation

Is there a better 3D representation for 3D controllable image synthesis?

Schwarz^{*}, Liao^{*}, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020

3D Representations

3D Latent Feature with Learnable Projection

HoloGAN [Nguyen et al., ICCV 2019]

+ High image fidelity

Object identity may vary with viewpoint due to learnable projection

3D Representations

3D Shape with Volumetric Rendering

PlatonicGAN [Henzler et al., ICCV 2019]

Multi-view consistent

- Low image fidelity, high memory consumption

3D Representations

Generative Radiance Fields

Radiance Field

Continuous representation, multi-view consistent
 High image fidelity, low memory consumption

Comparison to Baselines

PlatonicGAN 🛎 🔋 🛸 🍉 HoloGAN 🚔 🌰 🚔 🍩 Ours 斗 📥 🦛 📥

Scalability to High Resolution

Disentangling Shape & Appearance

Real-World Datasets

Training Images

Training Images

 256×256

Failure Cases

White artifacts

Inward facing depth

More complex real world

• Incorporate more supervision • Object disentanglement

What's next?

RGB

Semantic

Bounding Box

Instance

Semantic

Confidence

Instance

Bounding Box

• Simulation

- 3D Controllable image synthesis
- Novel view & semantic synthesis

• Perception

- Semantic & instance segmentation in 2D & 3D
- Holistic scene understanding

• Robotics

Semantic SLAM

Thank you!

Live slides with videos: yiyiliao.github.io/20201224_GAMES

