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A vibrant city with new assets to improve visual quality




Can we learn a simulation tool from 2D images?

Liao*, Schwarz*, Mescheder, Geiger: Towards Unsupervised Learning of Generative Models for 3D Controllable Image Synthesis. CVPR, 2020



Goal
3D Controllable Image Synthesis

e | earning a generative image model

« With controllable 3D factors: o7
= Object shape

= ODject appearance

= Opject pose
= Camera viewpoint

e | earn from 2D observations
(unposed images)

e NoO supervision
(segmentation, bounding box, depth)



Generative Models

Classical Rendering Pipeline
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& 3D Design

=+ 3D factors can be controlled

== [xpensive 3D content creation

Render



Generative Models

2D Generative Models
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=+ Unsupervised learning from 2D images

== 3D factors cannot be controlled




Generative Models

Our approach
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=+ 3D factors can be controlled

=+ Unsupervised learning from 2D images
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Generative Models

Our approach
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3D Generator
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Differentiable Rendering
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3D Generator

e Foreground/background primitives: {oy, ..

e Primitive type: point cloud, sphere, cuboid
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— Render
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Differentiable Rendering

e Sample camera viewpoint, render each primitive individually

e Obtain feature map X, alpha map A and depth map D
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2D Generator

e Convert features to RGB pixel values

e Render to image via alpha composition (based on depth ordering)
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| 0SS Functions
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Datasets
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Experiments

Baselines

Layout2lm
[Zhao et al., CVPR 2019]

e Only 2D translation control, requires
2D bounding box supervision

e Fails to disentangle object identity
and pose




Experiments

Baselines

Ours 2D

Replace 3D primitives with 2D
primitives




Experiments

Baselines

>

Ours 2D

Replace 3D primitives with 2D
primitives

e Only 2D translation control
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Experiments

Baselines

Ours 2D

Replace 3D primitives with 2D E -‘
primitives -~ 4

e Only 2D translation control

e Fails to disentangle rotation and
translation

G




Experiments

Ours: Object Translation




Experiments
Ours: Object Rotation




Experiments

Ours: Camera Rotation




Experiments

Ours: Camera Rotation




Experiments

Ours: Camera Rotation




Experiments

Ours: Object Translation




s there a better 3D representation for
3D controllable image synthesis?

Schwarz*, Liao™, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurlPS, 2020



3D Representations

3D Latent Feature with Learnable Projection
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3D feature

Neural
COLMAP

Rendering

HoloGAN [Nguyen et al., ICCV 2019]

=+ High image fidelity

= (Object identity may vary with viewpoint due to learnable projection



3D Representations
3D Shape with Volumetric Rendering
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3D Obiject

PlatonicGAN [Henzler et al., ICCV 2019]

=+ Multi-view consistent

= | ow image fidelity, high memory consumption



3D Representations

Generative Radiance Fields
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-l- Continuous representation, multi-view consistent

=+ High image fidelity, low memory consumption



—xperiments

Comparison to Baselines
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—xperiments
Scalability to High Resolution
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—xperiments
Disentangling Shape & Appearance
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Experiments
Real-World Datasets

Training Images



Failure Cases

White (’

artifacts
More complex real world
data

Inward

e I[ncorporate more supervision

depth

e Object disentanglement




What's next?



KITTI-360




emantic Instance




KITTI-360

Confidence ' Bounding Box



‘ KITTI-360 e »
‘ Watch later Share
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https://www.youtube.com/watch?v=OonvYU5bx3s
https://www.youtube.com/channel/UCSdjfW9mXkhhY-JJEBvHIBQ
https://www.youtube.com/watch?v=OonvYU5bx3s

e Simulation
= 3D Controllable image synthesis
= Novel view & semantic synthesis
e Perception
= Semantic & iInstance segmentation in 2D & 3D
= Holistic scene understanding
e Robotics
= Semantic SLAM



Thank you!

Live slides with videos: yiviliao.github.io/20201224_GAMES


https://yiyiliao.github.io/20201224_GAMES/

