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Isualization, Artificial Intelligence and
ecision Making

Ross Maciejewski



The Role of Al in Decision Making
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Visual Analytics

Visual analytics is the science of analytical reasoning supported by interactive user interfaces
Uses artificial intelligence algorithms combined with interactive visual interfaces

This allows for the combination of domain expert knowledge with advanced analytics and data
exploration to facilitate interactive decision making

Computer Human D. Sacha, A. Stoffel, F. Stoffel, B.C. Kwon, G. Ellis, D.A.
.m‘.“-."am{\ Intaraction Sensemaking Keim, “Knowledge Generation Model for Visual

T . . . . .
W™ Loop Analytics,” IEEE Transactions on Visualization and
Visualization

Computer Graphics,
l Action |
| H}fpc}thems |

2 m s of ntoraction [Knowledge)

| Insight |
[ Finding | -

Loop
MEn n'E.:'n“I'.I'D\.".'

KDD Process



Geographic Decision Support Systems
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Malik, A., Maciejewski, R., Collins, T., Ebert, D., T., “Visual Analytics Law Enforcement Toolkit,” IEEE International Conference on Technologies for Homeland Security, 2010.
Malik, A., Maciejewski, R., Maule, B., Ebert, D. S., “A Visual Analytics Process for Maritime Resource Allocation and Risk Assessment,” Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), 2011.

Coast Guard Meritorious Team Commendation (PROTECT), Ross Maciejewski served as a member of the United States Coast Guard Port Resilience for Operational Tactical Enforcement to Combat Terrorism (PROTECT) Team while at
Purdue University's Department of Homeland Security Center of Excellence (VACCINE), May 2013.

Razip, A. M. M., Malik, A., Afzal, S., Joshi, S., Maciejewski, R., Jang, Y., EImqvist, N., Ebert, D. S., “A Mobile Visual Analytics Approach for Situational Awareness and Risk Assessment,” IEEE Pacific Visualization Symposium, 2014.



Visual Analytics System for Oil Spill Response

and Recovery
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Informing Coastal Community Planning and
Response to Environmental Change in Regions with
Offshore Oil and Gas Operations

Yuxin Ma, Prannoy Chandra Pydi Medini,
Jake R. Nelson, Ran Wei, Tony Grubesic,
Jorge A. Sefair, Ross Maciejewski

VADER Lab, CIDSE, Arizona State University

e Code Available at:
https://github.com/VADERASU/BlosomAndOscom

e Project Website: http://vader.lab.asu.edu
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Center for Accelerating Operational Efficiency
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Artificial Intelligence in the Homeland Security
Enterprise

Technology that relies on a set of FRAg
algorithms and techniques to solve Bz =

problems that humans perform _ i
Intuitively and near automatically e

Examples of Al in HSE

Verification and identification using
biometrics* (face, iris, voice, fingerprints):
CBP Office of Field Operations, TSA,
USCIS

Intelligent illicit object detection

Face recognition and verification in airport
security

*DHS Winter Study Biometrics Roadmap, 2015-2018 Final Report (2016)
** https://lwww.arabianaerospace.aero/smiths-detection-highlights-weapon-recognition-in-airport-show-reveal.html

Smiths Detection’s ICMORE scanner**



Deferring Decisions:

Effects on Human-Al Team Performance

Design Factors

Al Deferral Rate

Low (22%)

Medium (44%)

High (66%)
Interaction Structure

== Nanual control

—  Advisory control

Supervisory

Pls: Mickey Mancenido and Erin Chiou

Amazon M Turk

- ==

Volunteer | { | Training and Task
Demographics | |  Volunteers J \__.__Protocol

Face Verification
Task Testbed

et
AA |
(= |

| Emulator settings | | Face images | | Experimental Design

VGG Face

\|

/

Responses

Throughput (travelers
screened/minute)

Error rate
Job satisfaction
Trust ratings

Perceived
accountability for
outcomes

Perceived workload

|



Human-Al Teaming in Decision Making

You'd think after years of using Google Maps we’'d trust that it knows what it's doing. Still, we
think, “Maybe taking the backroads would be faster.”

People are even less trusting of algorithms if they’ve seen them fail, even a little. And they’re
harder on algorithms in this way than they are on other people.?3

An underlying goal of many visualization methods is to inject domain knowledge into the analysis
and point out potential algorithmic errors to the end user for updating and correction.

Visualization could potentially contribute to algorithmic aversion during forecasting tasks and
lead to reduced performance.

1 - Walter Frick. Here’'s Why People Trust Human Judgment Over Algorithms. Harvard Business Review. February 27, 2015. https://hbr.org/2015/02/heres-why-people-trust-human-judgment-over-
algorithms

2 — Berkeley J Dietvorst. 2016. People Reject (Superior) Algorithms Because They Compare Them to Counter-Normative Reference Points. 2016. https://ssrn.com/abstract=2881503

3 — Berkeley J Dietvorst, Joseph P. Simmons, and Cade Massey. 2015. Algorithm Aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General
144(1): 114-126.



How Will Humans Use Predictions?

e What is Predictive Visual Analytics

* VAST Grand Challenge Award: Outstanding Comprehensive Submission for

Box Office “VADER/VIS-Grand Challenge” awarded at the IEEE Conference on Visual Analytics
S Science and Technology (Steptoe, M., Krueger, R., Zhang, Y., Liang, X., Garcia,

Jdecelleilelll R Kadambi, S., Ertl, T., Maciejewski, R.)

Extended

e Small Size User Study
Work

e Buchanan, V., Lu, Y., McNeese, N., Steptoe, M., Maciejewski, R., Cooke, N.,
Formal “The Role of Teamwork in the Analysis of Big Data --- A Study of Visual Analytics
and Box Office Prediction,” Big Data, 5(1): 53-66, 2017.

User Study

* Human-in-the-Loop Prediction Accuracy — In Progress



Box Office Prediction
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Lu, Yafeng, Robert Krtiger, Dennis Thom, Feng Wang, Steffen Koch, Thomas Ertl, and Ross Maciejewski. "Integrating
predictive analytics and social media." IEEE Conference on Visual Analytics Science and Technology, pp. 193-202. IEEE, 2014.



Explore Prediction Accuracy

Modify our previous system and conducted a controlled experiment
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Explore Prediction Accuracy

Procedure
Training
» Use slides that covered the purpose of the study (box office prediction), the
usage of the system and how to interpret the visualized information.
* Use a quiz to test the understanding of crucial information.
Practice Prediction (1 movie, Fast & Furious 6)
Real Prediction (9 movies, 3 models, randomly ordered)

e 300: Rise of An Empire, The Amazing Spider-Man 2, Maleficent, Transformers:
Age of Extinction, The Equalizer, Kingsman: The Secret Service, San Andreas,
Terminator Genisys, and Mission: Impossible — Rogue Nation

e 15 min to explore and finalize their prediction

Questionnaires
 What data they used to make their decisions and predictions and why.
 Workload (NASA TLX)




Explore Prediction Accuracy

« Participant predictions were compared to model predictions

300: Rise of An The Amazing Maleficent Transformers:  The Equalizer Kingsman: The  3San Andreas Terminator Mission:

Empire Spider-Man 2 Age of Secret Service Genisys Impossible -
: | | Extinlction | | | | RoguelNatiun |

o= ; - - = - - == ... 72(40%) have a lower RAE
o= = ! = = - : == . thanthe model, while 108
o= - K - = = o = (60%) have a higher RAE
o= — - ~ = - = — than the model.
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Considerations for Human-Machine
Intelligence

Domain Knowledge Integration - There are domains where human background knowledge is essential and where
a lot of tacit knowledge which is difficult to represent in an algorithm plays a role. In such a case the human-in-the-
loop approach may yield much better results.?

Visualization for Trust - Studies report that forecasters may desire to adjust algorithmic outputs to gain a sense of
ownership of the forecasts due to a lack of trust in statistical models.?

Visualization and Learning - Typically that type of system means that the user will have some interactions that
change a model, whether directly or indirectly. Getting engagement like that may really change the landscape of
participation. It changes the idea of accuracy that you can test because the accuracy will evolve based on the
human.

How can we measure the knowledge integration? What is the baseline when truly supporting human-
machine tasks?

1 - Research has shown that domain expertise diminished people’s reliance on algorithmic forecasts which led to a worse performance. (Hal R Arkes, Robyn M Dawes, Caryn Christensen. 1986.
Factors Influencing the Use of a Decision Rule in a Probabilistic Task. Organizational Behavior and Human Decision Processes. 37(1):93-110)

2 - Berkeley J. Dietvorst, Joseph P Simmons, and Cade Massey. 2016. Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them. Management
Science.



The Role of Visualization in Al

“Computation and analyses are often seen as black boxes that take tables as input
and output, along with set of parameters, and run to completion or error without
interruption™

“... calls for more research [...] on designing analysis modules that can repair
computations when data changes, provide continuous feedback during the
computation, and be steered by user interaction when possible™!

1 - J.-D. Fekete. Visual Analytics Infrastructures: From Data Management to Exploration. Computer, 46(7):22-29, 2013

MUHLBACHER T., PIRINGER H., GRATZL S., SEDLMAIR M.,
STREIT M.: Opening the Black Box: Strategies for Increased User
Involvement in Existing Algorithm Implementations. |IEEE
Transactions on Visualization and Computer Graphics 20, 12 (2014),
1643-1652

TZENG F.-Y., MA K.-L.: Opening the Black Box-Data Driven
Visualization of Neural Networks. In IEEE Visualization. (2005),
|IEEE, pp. 383-390.

MAY T., BANNACH A., DAVEY J., RUPPERT T., KOHLHAMMER J.:
Guiding Feature Subset Selection With an Interactive Visualization.
In IEEE Symposium on Visual Analytics Science and Technology
(2011), IEEE, pp. 111-120

LU VY., KRUGER R., THOM D., WANG F., KOCH S., ERTL T,
MACIEJEWSKI R.: Integrating Predictive Analytics and Social
Media. In IEEE Conference on Visual Analytics Science and
Technology (2014), IEEE, pp. 193-202.



Explainable Al (XAl)

A suite of machine learning techniques:
Explainable models with high-level performance
Understand, appropriate trust, and manage Al partners

Today
Training Machine Learning Learn.ed
Data Process Function
XAl
New
Training Machine L Explainable | Explanation >
Data Learning Model Interface [€—
Process

Task

-
€«

Task

©

= o o - o o o oy,

————————————————————

o Questions
Why did the model do that?
Why not something else?
When to succeed and fail?
When to trust?
How to correct errors?



Visual Analytics Iin Explainable Al

Visual Analytics

Combine the automated analysis with interactive
visualizations

Enhance the understanding, reasoning, and decision making

Visual Analytics Process

Algorithms !

Machine Learning Pipeline Visualization
. | Training | Ilt/elaa(r::ii:z | Learned Analvsi
i Data Process Function alysis Loop :>
i ,| Interpretation Knowledge
i



Classification

Find a model for class attribute as a function of the values of other

attributes.

Goal: previously unseen records should be assigned a class as

accurately as possible.

Categorizing emaill
messages

|dentifying tumor cells

Cataloging galaxies

Features extracted from
email message header
and content

Features extracted from
MRI scans

Features extracted from
telescope images

Spam or non-spam

malignant or benign cells

Elliptical, spiral, or
irregular-shaped galaxies

Original Dataset

Classifier



Visualizing Class Separations

High-dimensional Labeled Dataset
Machine learning: Classification & Clustering

Dimension Reduction
Widely-used for visualizing high-dimensional labeled datasets

Challenges in DR Methods

Linear — Non-linear Supervised
+ Margins can be easily + Can handle non-linear +  Optimized with-in class
illustrated separations distributions
Unable to handle non-linear -  Cause heavy distortions - Distortions on between-

structures and patterns class distances

Unsupervised

Less requirement for
datasets (no need for labels)

Difficult to depict class
separation patterns



Visualizing Class Separations

Contributions

A novel approach for detecting locally linear separations in high-dimensional labeled datasets with
complex class boundary structures

A visual analysis framework that facilitates the exploration and diagnosis of complex class boundaries

A Way in Between: Locally Linear Separations

©o_. O
@ 0 o o
00 o0-0 © "o/ ~00 o Advantages
0000 ‘0 o 06209% o - Easy-to-understand Linear
02 0o ©O AIRE Qo0 Projections
o) 00000000 oL  o© -
©Q© o) © 2%°%%0 - Ability to handle complex
o

non-linear class separations
Original Dataset Non-linear Classifier Locally Linear Separations



Locally Linear Segment

Motivation
Decision boundaries of classifiers as a tool to describe class separations
Local linearity analysis in machine learning (e.g. LIMEL)

Definition
A set of linear approximations extracted from the original decision boundary

o) ,
_===> Locally Linear Segments
(@] - -7
O O O ’,—’

Non-linear Classifier Locally Linear Separations

[1] Ribeiro et al. “Why should I trust you?” Explaining the predictions of any classifier. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.



Extraction of Locally Linear Segments

Extract Seeds Near the Decision Boundary Generate Locally Linear Segments
* Wrongly-classified Support Vectors Expanded Seed Set SD; t‘;‘ar::lnif e
o © o ° 00 o\® ¢ © e :r ------- :
o °L, oo 0% o %P, 8 ! @/—1‘——\-‘ O
0200 %0 o 00 o P ! ) O« o —_
© 0 ,%00 e o 0,0 o000 PR | AN
o %P oo > %L ° °0 - § °
o 00 00, o 0% 00,
o} © o o ° o
The orisinal labeled The decision bound < |Intra-class ~-NN . . .
, neoriginaliabele © declsion boundary The selected seeds For aseed sd.... < Inter-class &-NN Alinear SVM trained Separating hyperplanes
high-dimensional dataset of a non-linear SVM I Find its ~~NNs on the found neighbors based on the seeds
o o o
Merge Similar Segments o o Compute Data Coverage
> @0 . /\
) L .o train_acc = 1.0 - :I'r-al-nl-né -
Nearest b ! !
A \ oo ! acc:r;\cv : o o o
b0 o © o 0@ 0 Tt 0 o
e CEE o X I ¢
( : 0% 0 ©o I o
T -- ) Find the j-th nearest seed O‘& A new linear SVM | Replace the previous
For aseed and its among the top-7nearest o'y trained on the merged I two seeds with the Simplified locally linear Assigning data instances
separating hyperplane.. seeds of the same class Merge the two seed set I new merged one segments to their nearest segment
1‘ seed sets |
\ /
N e T R

Try the next nearest seed (j «j+1)

——— — — — ———————————

J__.

\



Visual Analytics Framework

Task 1: Macroscopic Analysis  Overview of the locally linear segments
Show the number of segments and highlight the major ones
Reveal the coverage of data instances under each segment
Depict the locations of the segments and relationships among different segments

Task 2: Microscopic Analysis  Detailed analysis of specific segments
Examine the data distribution and separation near a segment
Show the primary features used for determining class separation
Exploring the neighboring segments
Trace a path between segments along decision boundaries



Macroscopic Analysis

Segment Relation View

« Segment Graph
Visualize the segment relationships as a graph

structure
Graph Structure Segment Glyphs Edges
Segment B
(1st NN of A) Size of the coverage
Segment A Arcs: Ratios of data
i i Number of seeds
e Q) < o RV EE—

Color: Class label . (qutrvaturter:] cosine o{.angles
- etween the separating
. . . . hyperplanes

- Thickness & Length: Distances
between segments

O O00)

0% 25% 50% 75% 100%

Segment C
(2nd NN of A) Outer Ring: Separation accuracy of all covered data



Microscopic Analysis

Segment Detall View

Details of Covered Data Instances Segment istall Visw (Segmant 7)
Number of the covered instances - e e e
. | . . 17 96 90.48 %
Data distribution (with PCP) ]
- _ . Top Features G- o o g - »
Dominant features for separating the local region
e .-‘L-:‘:‘-aa _ :nat"'“‘-}-raa.., .




Macroscopic Analysis

Projection View

Linear Projection (PCA)
Non-distorted view of separations

t-SNE Projection
Initial impression of the distribution

) 2% N
- 5%
| b

a?’{ ‘

Linked Interaction

Highlight a specific segment

Segment 1

'
.




Microscopic Analysis

Path Exploration View

Goal

Present how two segments are connected with each other
Flexible traverse between segments

©¢ ¢ Seeds @

Extracted Segments
(1),(2),and (3)

[(a) Path: (1)—(2) ]

\

/

[(b) Path: (1)_>(3)]

[Scatterplot Series ]

@
o -
000 5 1-D PCA
o"s @
O g
o o
o
"o

Shared seeds

between (1) and (2) Normal Vector of the

Separating Hyperplane

Build a &~NN graph
on all seed instances
(k=2 in this example)

Find the shortest path
between seedsin (1) and (3)
on the &©-NN graph

No shared seed
between (1) and (3)



Microscopic Analysis

Path Exploration View

Goal

Present how two segments are connected with each other
Flexible traverse between segments

©¢ ¢ Seeds @

Extracted Segments
(1),(2),and (3)

[(a) Path: (1)—(2) ]

Shared seeds
between (1) and (2)

No shared seed
between (1) and (3)

[Scatterplot Series ]

1-D PCA
o®® (1)

Normal Vector of the
Separating Hyperplane

Build a &~NN graph
on all seed instances
(k=2 in this example)

Segments with Shared Instances
* Interactive touring interaction

Find the shortest path
between seedsin (1) and (3)
on the &©-NN graph



Microscopic Analysis

Path Exploration View

Goal

Present how two segments are connected with each other
Flexible traverse between segments

©¢ ¢ Seeds @

Extracted Segments
(1),(2),and (3)

[(a) Path: (1)—( 2)

\

[(b) Path: (1)_>(3)]

Shared seeds
between (1) and (2)

[Scatterplot Series ]

1-D PCA
o®® (1)

Normal Vector of the
Separating Hyperplane

Segments with Shared Instances
Interactive touring interaction

No shared seed
between (1) and (3)

Build a &~NN graph
on all seed instances
(k=2 in this example)

Find the shortest path
between seedsin (1) and (3)
on the &©-NN graph

Segments w/o Shared Instances
e (Interpolate bridging segments)
* Interactive touring interaction



Microscopic Analysis

Path Exploration View

+ Goal
Present how two segments are connected with each other

Flexible traverse between segments

Selected Path on the Representative Scatterplots e Layout
Segment Graph for All Segments - Links of scatterplots in a zig-zag way
e Interaction

« Touringinteraction between
representative scatterplots



Case Study
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Sogment Relation View
Extract Seeds Near the Decision Boundary Generate Locally Linear Segments
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Visual Analysis of Class Separations with Locally Linear Segments

Yuxin Ma, Ross Maciejewski @ VADER Lab, CIDSE, Arizona State University
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Demo Available at: https//github.com/wintericie/visual-analysis-class-boundary



Manipulating Decision Boundaries

« Static Analysis -- Dynamic Analysis of (Malicious) Changes
o Comparing Decision Boundaries between Different Classifiers
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Static Analysis Dynamic Analysis of Manipulations on Decision Boundaries

« Manipulating Decision Boundaries of Classifiers in a Malicious Way

E.g. Poisoning Attack
« Different decision boundaries (classifiers) when the training dataset is manipulated
o Can be utilized by attackers to control the predictions from the classifiers on purpose



Vulnerability Analysis Vulnerabllity | gyt Vunersoly eseu

« Coreidea: Prevent the target instance from being misclassified
Attack Algorithms: Binary-Search Attack & StingRay Attack

Original Model Poisoning (Round 1) Poisoning (Round 2)

D B | s

Q'0 v ® @ | ALabel Flipped)
R Q6 .- Poisoning - © Qe Poisoning __
® --'9@ instancest - & _ o ) Instances
o ®o *° e @& ° >
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« Vulnerability Measures oo © »

. . . « Attack 10 Times * Training Acc.
Decision Boundary Distances (DBD) e @ . min(#insertion) +  TrainingRecall
Minimum Cost for a Successful Attack (MCSA) (g h .

Performance metrics of the poisoned model Distance to the Minimum #poison Model Performace Metrics
Decision Boundary Among Multiple Attacks (Accuracy, Recall, etc))

[1] Burkard et al. Analysis of causative attacks against svms learning from data streams. In Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics, pp.
31-36. ACM, 2017

[2] Suciu et al. When does machine learning fail? Generalized transferability for evasion and poisoning attacks. In Proceedings of the USENIX Security Symposium, pp.1299-1316, 2018.



Vulnerabilities in Machine Learning
[Green light ahead. ] [E

Y

Generator

Self-driving Car ) | Data Sample?

Data Sample

Discriminator Yes/No
LOtt3ry
N MOnN3y

Spam Fllter

Generative Adversarial Nets (GAN)

[1] Martinez et al., Driving style recognition for intelligent vehicle control and advanced driver assistance: A survey. IEEE Transactions on Intelligent Transportation Systems,19(3):666-676, 2018.
[2] Mei et al., Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. AAAI Conference on Artificial Intelligence, 2871-2877.
[3] Goodfellow et al., Generative Adversarial Nets. Advances in Neural Information Processing Systems. 2014.



Training Stage
Training Dataset Fitting Output
—— — &
Spam  Non-spam Classifier Trained
Emails Emails (Untrained) Classifier

=

Example: Filtering Spam Emails

Testing Stage
Unlabeled Data Prediction
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Example: Filtering Spam Emails

Training Stage
Training Dataset Fitting Output
—_— — &
Spam  Non-spam Classifier Trained
Emails Emails (Untrained) Classifier
Goal Knowledge
Make specific White-box setting
as ones (model, training data)
Capability Strategy
Attacker Limited insertion to Find the minimum
the training dataset insertions for the goal

=

Testing Stage
Unlabeled Data Prediction Labels
spam
- —- MOTSoa |
Unlabeled Trained Spam/
Emails Classifier Nonspam

Explanation

|dentify potential vulnerabilities
Reveal attack processes

Diagnosis
Inspect attack results
Explore different attack strategies

Visual
Analytics



TArgB/tmthrasR@mng Attack

Training Stage
Training Dataset Fitting Output
Spam | Non-spam Classifier Tramed
Emails Emails (Untrained) Classifier
7
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Poisoning Instances

Testing Stage
Unlabeled Data Prediction Labels
# # | rorTspPd |
(o NoNe, T
Unlabeled Trained Spam/
Emails Classifier Nonspam

Task 1: Attack Space Analysis
Identify vulnerabilities
Specify target instances

Task 2: Attack Result Analysis- - - - - -
Overview of the attack result
Diagnose the impact of the attack



Framework Overview
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Vulnerability Analysis Vulnerabllity | gyt Vunersoly eseu

« Coreidea: Prevent the target instance from being classified as Spam
Attack Algorithms: Binary-Search Attack & StingRay Attack

Original Model Target Poisoning (Round 1) Poisoning (Round 2)
r I "\ ) r— ; \ r - "\ Target
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R Q6.- Poisoning - © Qe Poisoning __ (Label Flipped)
® -~ '\Q,"O Instancest - & _ __*,‘ o Instances
e ®eo ] e © & >
©e® g 09 ©® g/0o
®, @ g000 ©o @ g 000
\\ ® N @
« Vulnerability Measures oo © i
L. . o . b raining Acc.
Decision Boundary Distances (DBD) e ? : ﬁf:z;':nigr{:omne)s »  Training Recall
Minimum Cost for a Successful Attack (MCSA) C’; h .
Performance metrics of the poisoned model Distance to the Minimum #poison Model Performace Metrics

Decision Boundary Among Multiple Attacks (Accuracy, Recall, etc))

[1] Burkard et al. Analysis of causative attacks against svms learning from data streams. In Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics, pp.
31-36. ACM, 2017

[2] Suciu et al. When does machine learning fail? Generalized transferability for evasion and poisoning attacks. In Proceedings of the USENIX Security Symposium, pp.1299-1316, 2018.
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Attack Detall AnalysSIs Gresipemomne)|

Model Overview

(Alternatives)

MODEL OVERVIEW Y Model
Victim TP AUC Score
o Victim: 141 Victim: 0.93
Ongmal Poizoned: 175 Poisoned: 0.93
Strategy
Binary Search N [ 1-Scare |
) Poisaned: 13 ™ " Poisoned: 0
# Poisons
3
Target ID
FP Recall
1 Victim: 11 Victim: 0.90
Poisoned: 17 Poisoned: 0
Poison Label ’
TN Accuracy
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Poisoned: 226 Poisoned: 0.93

Radar Chart for Model Performances

Confusion Matrix

Confusion Wheel

« Comparison

Victim ey Pojsoned
Performance metrics

» Design Rationale

Suitable for comparing differences
Easy to use

[1] Alsallakh et al. (2012). Reinventing the contingency wheel: Scalable visual analytics of large categorical data. I[EEE TVCGC.

[2] Alsallakh et al. (2014). Visual Methods for Analyzing Probabilistic Classification Data. IEEE TVCGC.
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Case Study
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Explaining Vulnerabilities to
Adversarial Machine Learning
through Visual Analytics

Yuxin Ma, Tiankai Xie, Jundong Li,

Ross MaciejewsKi
VADER Lab, CIDSE, Arizona State University

e Code Available at: https://github.com/VADERASU/visual-
analytics-adversarial-attacks

e Project Website: http://vader.lab.asu.edu
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Graph-based Ranking
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Search Engine Ranking Recommendation System

[1] Page, Lawrence, et al. The PageRank citation ranking: Bringing order to the web. Stanford InfoLab, 1999.
[2] Gori, Marco, et al. "ltemrank: A random-walk based scoring algorithm for recommender engines." IJCAI. Vol. 7. 2007.



Remove a Node

Rank Webpage PR value

- B removed
““““ 4y C 0.0328
[ pageRank } 1t E 0.308%
: 21 D 0.1631
/ /
: : ).163
Motivation :
@ . How graph-basedranking methods are sensitive to the perturbation of graph elements? -032
. What the specific ranking changes would a certain removed node cause?
. Ranking changes impact the exposure in real-world applications

[1] "Pagerank”. En.Wikipedia.Org, 2020, https://en.wikipedia.org/wiki/PageRank. Accessed 17 Aug 2020.
[2] Singh, Ashudeep, and Thorsten Joachims. “Fairness of Exposure in Rankings.” Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018):



Sensitivity Index

«  The degree of the ranking method’s sensitivity to the perturbation (removal)

- Given any graph-ranking method

1 B = B

2 ¢C 4 C

3 E 1 E

4 D 2 D

Slp =L(r,r) T —

B ) 6 G 5 G
Distance metric Ranking Positions Ranking Positions

(L1 norm) (original) (perturbated)




Visual Analytics Framework

Identifying the Instance-level Sensitivity

Constraint Filtering

Diagnosing the Perturbation Effects
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Auditing the Sensitivity of Graph-based Ranking with
Visual Analytics

Tiankai Xiel,Yuxin Mal, Hanghang Tong?,
My T. Thai®, Ross Maciejewskit ST
1. VADER Lab, CIDSE, Arizona State University e —
2. University of lllinois at Urbana-Champaign —
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e Code Available at: e —
https://github.com/VADERASU/auditing-sensitivity- (@
e Project Website: http://vader.lab.asu.edu = = -
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Visual Analytics Iin Explainable Al

Visual Analytics Process

Machine Learning Pipeline Visualization

Training Machine Learned
r > —> ing —> : >
: Data Learning Function Analysis Loop
: Process
|
: . ! . > Interpretation Knowledge
: Algorithms :
|

———————————————————————————————————————————————————————————————————

o Explainable Al (XAI) inthe VADER Lab @ ASU
- Data Preprocessing: Visual Inspection of Decision Boundaries (TVCG 2020)
- Interpretable Model Training: Open-box Exploration of SVMs (CVMJ 2017)

 Security: Visual Explanation of Adversarial Machine Learning (VAST 2019), Graph Auditing (VAST
2020)

- Reusability: Visual Analysis of Transfer Learning Processes (VAST 2020)
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