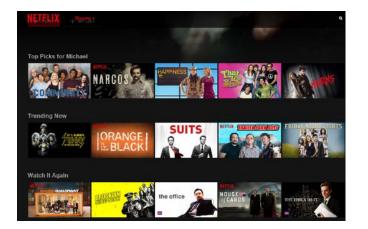


# Visualization, Artificial Intelligence and Decision Making

Ross Maciejewski

## The Role of Al in Decision Making







Inconsequential

Customers Who Bought This Item Also Bought

Data Wrangling with

> Wes McKinney

\$27.68 *Prime* 

Paperback

**会会会**公 118

Pandas, NumPy, and ...



<

Data Science from Scratch: First Principles with Python > Joel Grus 全全全全公 54 #1 Best Seller (in Data Mining Paperback \$33.99 */Prime* 



Data Science for Business: What You Need to Know about Data Mining and ... > Foster Provost \*\*\*\*\*\*\* 135 Paperback \$37.99 **/Prime** 



Reproducible Research with R and R Studio, Second Edition... Christopher Gandrud \*\*\*\*\* Paperback \$51.97 **/***Prime* 

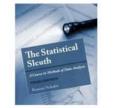


An Introduction to Statistical Learning: with Applications in R... Gareth James \*\*\*\*\* 105 Hardcover \$68.35 **/***Prime* 



Data Smart: Using Data Science to Transform Information into Insight > John W. Foreman \*\*\*\*\*\* 199 #1 Best Seller (in Computer Simulation Paperback \$28.16 JPrime





The Statistical Sleuth: A Course in Methods of Data Analysis Fred Ramsey Hardcover \$284.42 *Prime* 

### Page 1 of 15

>



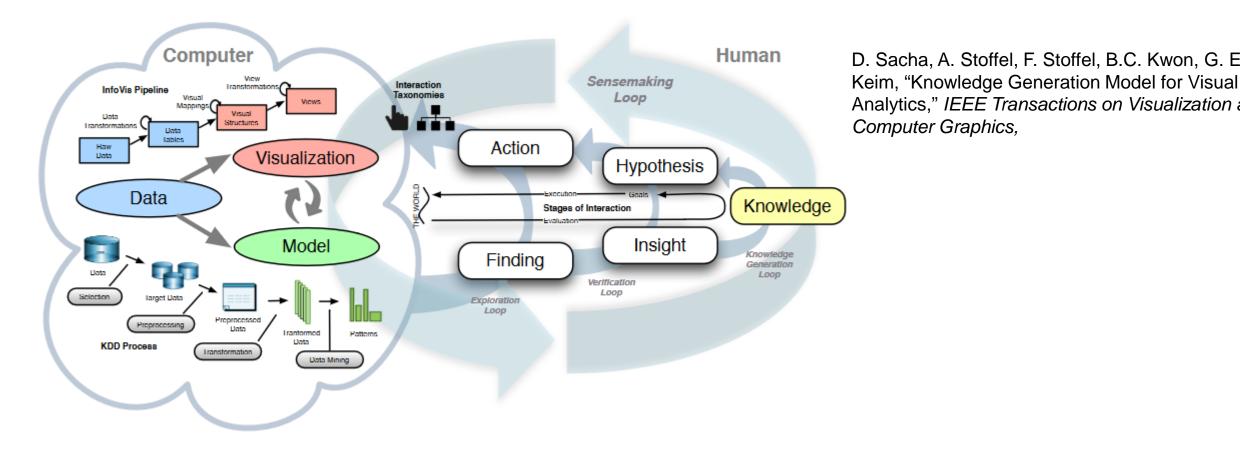






## Visual Analytics

- Visual analytics is the science of analytical reasoning supported by interactive user interfaces
- Uses artificial intelligence algorithms combined with interactive visual interfaces
- This allows for the combination of domain expert knowledge with advanced analytics and data exploration to facilitate interactive decision making



D. Sacha, A. Stoffel, F. Stoffel, B.C. Kwon, G. Ellis, D.A. Analytics," IEEE Transactions on Visualization and

### **Geographic Decision Support Systems**



Malik, A., Maciejewski, R., Collins, T., Ebert, D., T., "Visual Analytics Law Enforcement Toolkit," IEEE International Conference on Technologies for Homeland Security, 2010.

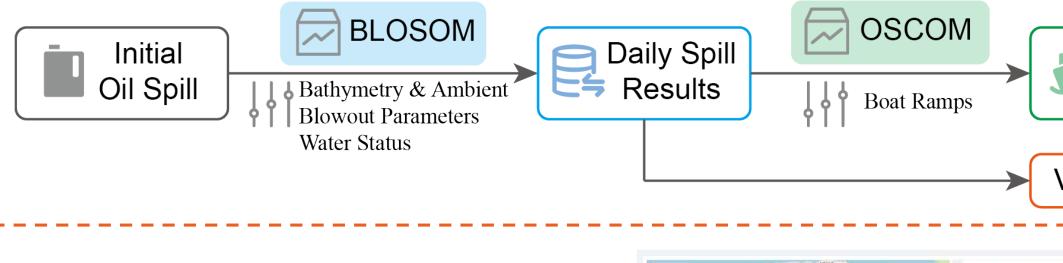
Malik, A., Maciejewski, R., Maule, B., Ebert, D. S., "A Visual Analytics Process for Maritime Resource Allocation and Risk Assessment," Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), 2011.

Coast Guard Meritorious Team Commendation (PROTECT), Ross Maciejewski served as a member of the United States Coast Guard Port Resilience for Operational Tactical Enforcement to Combat Terrorism (PROTECT) Team while at Purdue University's Department of Homeland Security Center of Excellence (VACCINE), May 2013.

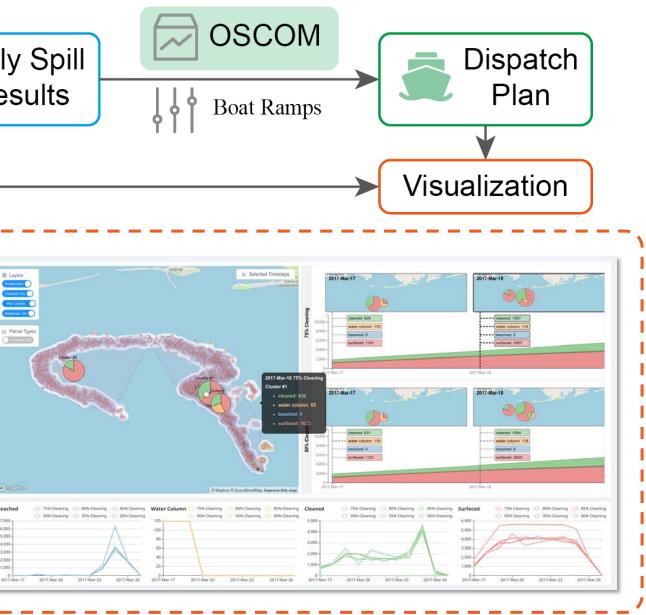
Razip, A. M. M., Malik, A., Afzal, S., Joshi, S., Maciejewski, R., Jang, Y., Elmqvist, N., Ebert, D. S., "A Mobile Visual Analytics Approach for Situational Awareness and Risk Assessment," IEEE Pacific Visualization Symposium, 2014.



### Visual Analytics System for Oil Spill Response and Recovery



- Analytical Tasks
- Visualization of Oil Spill
- Visual Comparison
- Decision Making Support
- Visual Design
- Parcel Overview
- Temporal View
- Map View







### Informing Coastal Community Planning and **Response to Environmental Change in Regions with Offshore Oil and Gas Operations**

Yuxin Ma, Prannoy Chandra Pydi Medini, Jake R. Nelson, Ran Wei, Tony Grubesic, Jorge A. Sefair, Ross Maciejewski

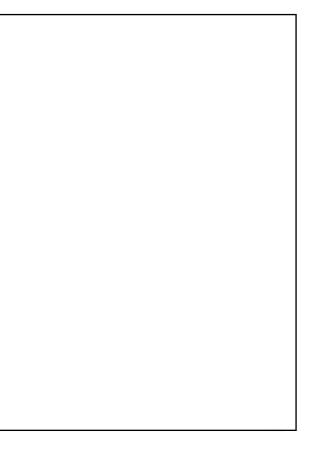
VADER Lab, CIDSE, Arizona State University

- Code Available at: https://github.com/VADERASU/BlosomAndOscom
- Project Website: http://vader.lab.asu.edu

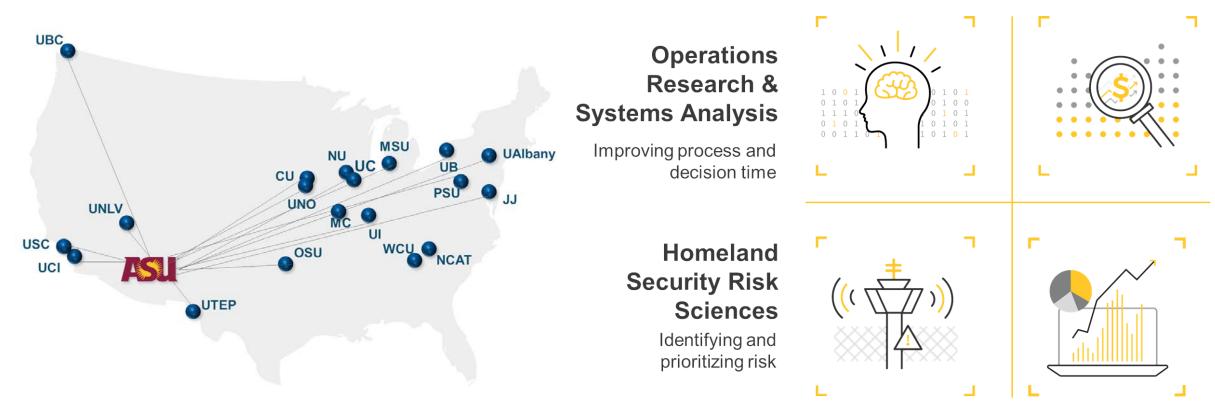
### Acknowledgement

Gulf Research Program – National Academies





### **Center for Accelerating Operational Efficiency**



"Center for Accelerating Operational Efficiency," Department of Homeland Security, \$40M, 8/17 – 8/27, PI: Ross Maciejewski; Co-PI (ASU only listed): Pitu Mirchandani, Ronald Askin, Huan Liu, Jingrui He, Hanghang Tong, Jorge Sefair, Giulia Pederelli, Gail-Joon Ahn



### **Economic Analysis**

Understanding the true cost

### **Data Analytics**

Real-time rapid response

### **Artificial Intelligence in the Homeland Security Enterprise**

- Technology that relies on a set of algorithms and techniques to solve problems that humans perform intuitively and near automatically
- Examples of AI in HSE
  - Verification and identification using biometrics\* (face, iris, voice, fingerprints): CBP Office of Field Operations, TSA, USCIS
  - Intelligent illicit object detection

\*DHS Winter Study Biometrics Roadmap, 2015-2018 Final Report (2016)

\*\* https://www.arabianaerospace.aero/smiths-detection-highlights-weapon-recognition-in-airport-show-reveal.html



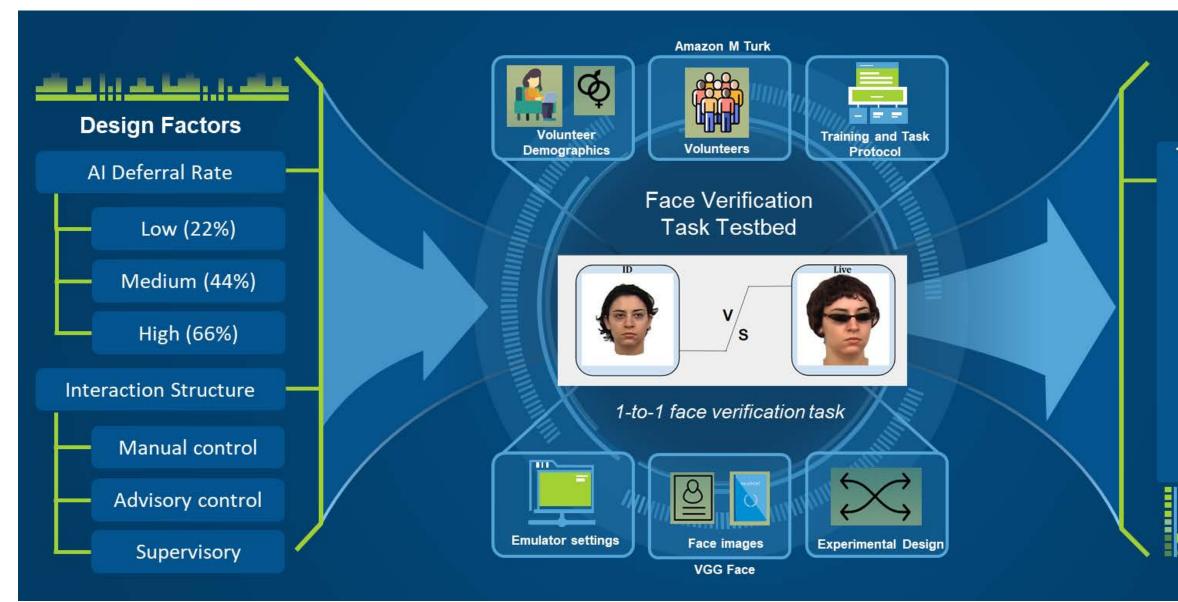
**Face recognition and verification in airport** security



Smiths Detection's ICMORE scanner\*\*



### Deferring Decisions: Effects on Human-AI Team Performance



PIs: Mickey Mancenido and Erin Chiou

Responses

Throughput (travelers screened/minute)

Error rate

Job satisfaction

**Trust ratings** 

Perceived accountability for outcomes

Perceived workload

## Human-Al Teaming in Decision Making

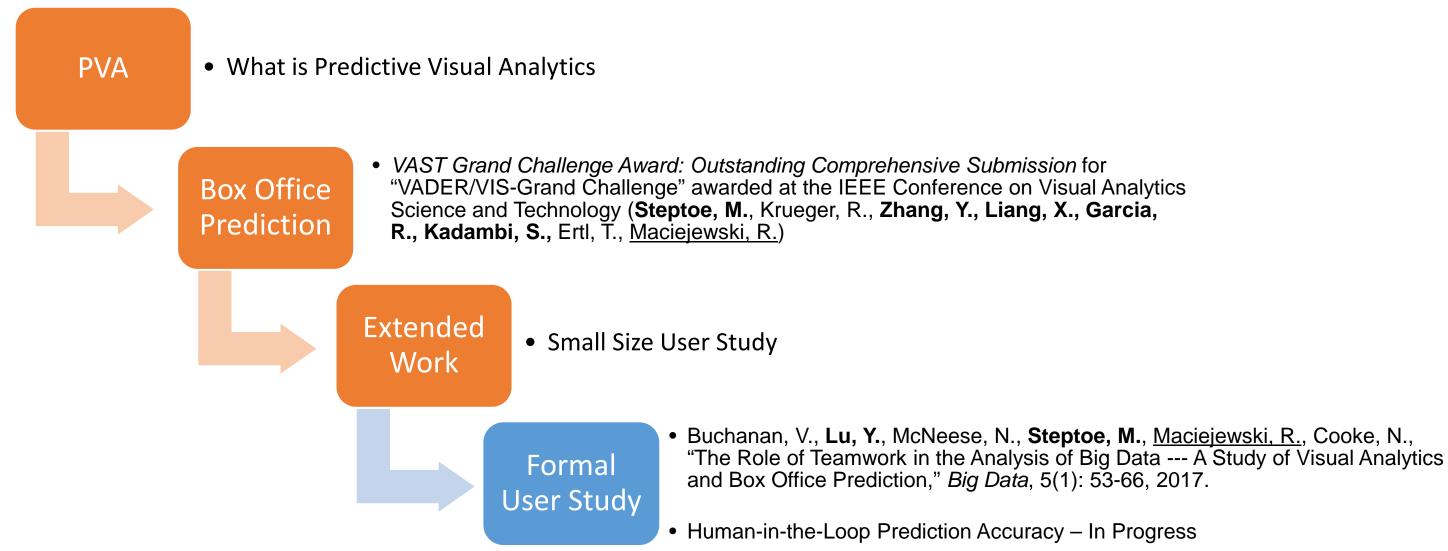
- You'd think after years of using Google Maps we'd trust that it knows what it's doing. Still, we think, "Maybe taking the backroads would be faster."<sup>1</sup>
- People are even less trusting of algorithms if they've seen them fail, even a little. And they're harder on algorithms in this way than they are on other people.<sup>2,3</sup>
- An underlying goal of many visualization methods is to inject domain knowledge into the analysis and point out potential algorithmic errors to the end user for updating and correction.
- Visualization could potentially contribute to algorithmic aversion during forecasting tasks and lead to reduced performance.

2 – Berkeley J Dietvorst. 2016. People Reject (Superior) Algorithms Because They Compare Them to Counter-Normative Reference Points. 2016. https://ssrn.com/abstract=2881503 3 - Berkeley J Dietvorst, Joseph P. Simmons, and Cade Massey. 2015. Algorithm Aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General 144(1): 114-126.

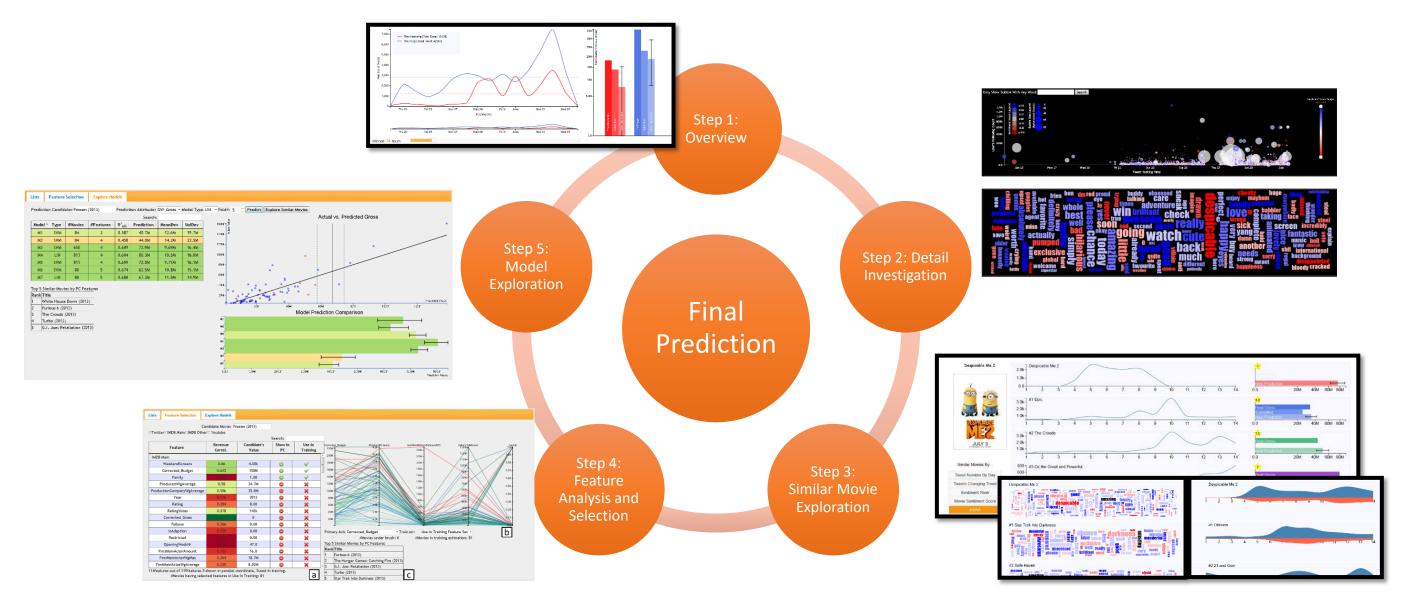


<sup>1 -</sup> Walter Frick. Here's Why People Trust Human Judgment Over Algorithms. Harvard Business Review. February 27, 2015. https://hbr.org/2015/02/heres-why-people-trust-human-judgment-overalgorithms

### **How Will Humans Use Predictions?**



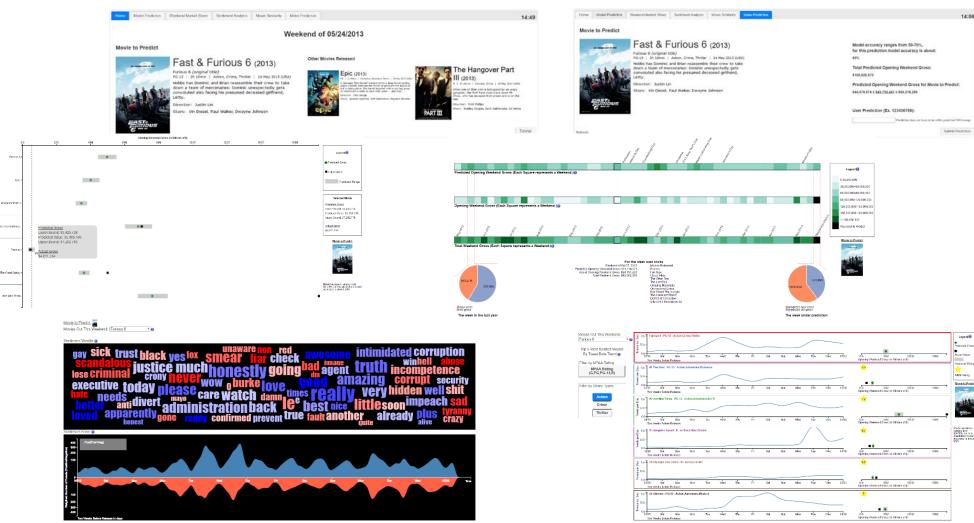
## **Box Office Prediction**



Lu, Yafeng, Robert Krüger, Dennis Thom, Feng Wang, Steffen Koch, Thomas Ertl, and Ross Maciejewski. "Integrating predictive analytics and social media." IEEE Conference on Visual Analytics Science and Technology, pp. 193-202. IEEE, 2014.

## **Explore Prediction Accuracy**

- Modify our previous system and conducted a controlled experiment
- 20 participants.
- 9 Movies
- 3 Models
- 6 interfaces



## **Explore Prediction Accuracy**

### Procedure

- Training
  - Use slides that covered the purpose of the study (box office prediction), the usage of the system and how to interpret the visualized information.
  - Use a quiz to test the understanding of crucial information.
- Practice Prediction (1 movie, *Fast & Furious 6*)
- Real Prediction (9 movies, 3 models, randomly ordered)
  - 300: Rise of An Empire, The Amazing Spider-Man 2, Maleficent, Transformers: Age of Extinction, The Equalizer, Kingsman: The Secret Service, San Andreas, Terminator Genisys, and Mission: Impossible – Rogue Nation
  - 15 min to explore and finalize their prediction
- Questionnaires
  - What data they used to make their decisions and predictions and why.
  - Workload (NASA TLX)

## **Explore Prediction Accuracy**

### Participant predictions were compared to model predictions



Model 1

Model 2

Model 3

72 (40%) have a lower RAE than the model, while 108 (60%) have a higher RAE than the model.

Over 50% of the participant prediction errors are larger than the model predictions errors in all three models.

### **Considerations for Human-Machine** Intelligence

- **Domain Knowledge Integration** There are domains where human background knowledge is essential and where a lot of tacit knowledge which is difficult to represent in an algorithm plays a role. In such a case the human-in-theloop approach may yield much better results.<sup>1</sup>
- Visualization for Trust Studies report that forecasters may desire to adjust algorithmic outputs to gain a sense of ownership of the forecasts due to a lack of trust in statistical models.<sup>2</sup>
- **Visualization and Learning** Typically that type of system means that the user will have some interactions that change a model, whether directly or indirectly. Getting engagement like that may really change the landscape of participation. It changes the idea of accuracy that you can test because the accuracy will evolve based on the human.

### How can we measure the knowledge integration? What is the baseline when truly supporting humanmachine tasks?

1 - Research has shown that domain expertise diminished people's reliance on algorithmic forecasts which led to a worse performance. (Hal R Arkes, Robyn M Dawes, Caryn Christensen, 1986. Factors Influencing the Use of a Decision Rule in a Probabilistic Task. Organizational Behavior and Human Decision Processes. 37(1):93-110)

2 - Berkeley J. Dietvorst, Joseph P Simmons, and Cade Massey. 2016. Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them. Management Science.

### The Role of Visualization in Al

- "Computation and analyses are often seen as black boxes that take tables as input and output, along with set of parameters, and run to completion or error without interruption"<sup>1</sup>
- "... calls for more research [...] on designing analysis modules that can repair computations when data changes, provide continuous feedback during the computation, and be steered by user interaction when possible"<sup>1</sup>

1 - J.-D. Fekete. Visual Analytics Infrastructures: From Data Management to Exploration. Computer, 46(7):22–29, 2013

MÜHLBACHER T., PIRINGER H., GRATZL S., SEDLMAIR M., STREIT M.: Opening the Black Box: Strategies for Increased User Involvement in Existing Algorithm Implementations. IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014), 1643-1652

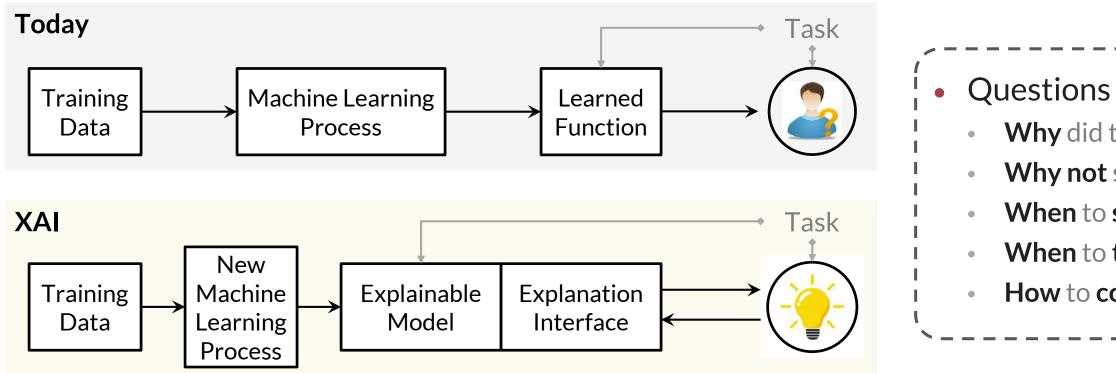
TZENG F.-Y., MA K.-L.: Opening the Black Box-Data Driven Visualization of Neural Networks. In IEEE Visualization. (2005), IEEE, pp. 383-390.

MAY T., BANNACH A., DAVEY J., RUPPERT T., KOHLHAMMER J.: Guiding Feature Subset Selection With an Interactive Visualization. In IEEE Symposium on Visual Analytics Science and Technology (2011), IEEE, pp. 111–120

LU Y., KRÜGER R., THOM D., WANG F., KOCH S., ERTL T., MACIEJEWSKI R.: Integrating Predictive Analytics and Social Media. In IEEE Conference on Visual Analytics Science and Technology (2014), IEEE, pp. 193-202.

## **Explainable AI (XAI)**

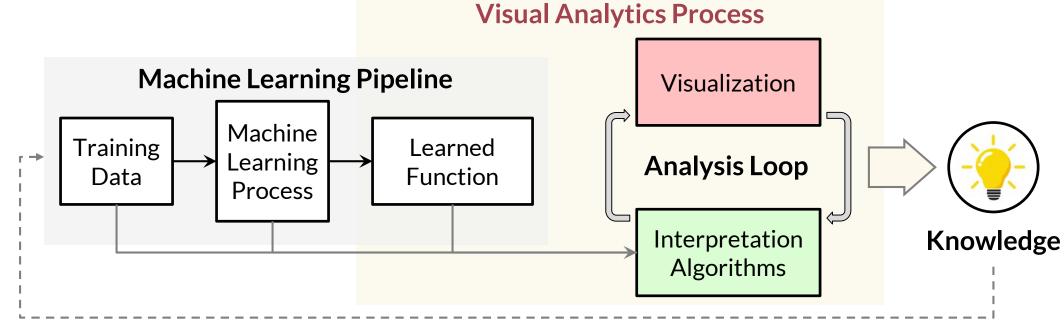
- A suite of machine learning techniques:
  - **Explainable models** with high-level performance
  - **Understand**, appropriate **trust**, and **manage Al partners**



| )                          | Ī |
|----------------------------|---|
| the model <b>do that</b> ? | I |
| something else?            |   |
| succeed and fail?          |   |
| trust?                     |   |
| orrect errors?             | i |
|                            | / |

## Visual Analytics in Explainable Al

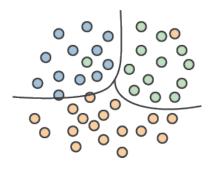
- Visual Analytics
  - **Combine** the automated analysis with interactive visualizations
  - **Enhance** the understanding, reasoning, and decision making



### Classification

- Find a *model* for class attribute as a function of the values of other attributes.
- Goal: previously unseen records should be assigned a class as accurately as possible.

| Task                        | Attribute set, x                                               | Class label, y                                   |
|-----------------------------|----------------------------------------------------------------|--------------------------------------------------|
| Categorizing email messages | Features extracted from<br>email message header<br>and content | spam or non-spam                                 |
| Identifying tumor cells     | Features extracted from MRI scans                              | malignant or benign cells                        |
| Cataloging galaxies         | Features extracted from telescope images                       | Elliptical, spiral, or irregular-shaped galaxies |



Classifier

## **Visualizing Class Separations**

- High-dimensional Labeled Dataset
  - Machine learning: Classification & Clustering
- Dimension Reduction
  - Widely-used for visualizing high-dimensional labeled datasets

### Challenges in DR Methods

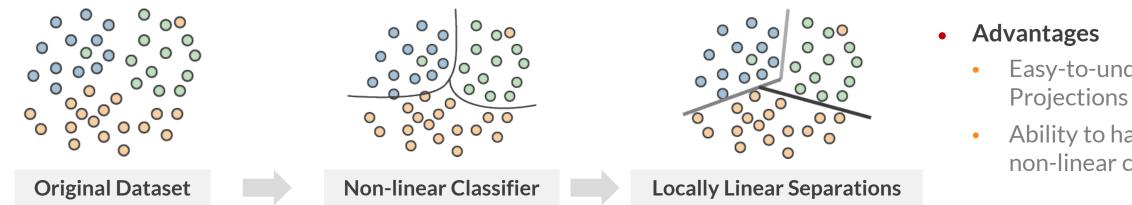
|   | Linear                                 |   | Non-linear                           |   | Supervised                                 |   | - I             |
|---|----------------------------------------|---|--------------------------------------|---|--------------------------------------------|---|-----------------|
| + | Margins can be easily<br>illustrated   | + | Can handle non-linear separations    | + | Optimized with-in class distributions      | + | Less r<br>datas |
| - | Unable to handle non-linear structures | - | Cause heavy distortions and patterns | - | Distortions on between-<br>class distances | - | Diffic<br>separ |

### Unsupervised

s requirement for asets (no need for labels) icult to depict class aration patterns

## Visualizing Class Separations

- Contributions
  - A novel approach for detecting locally linear separations in high-dimensional labeled datasets with complex class boundary structures
  - A visual analysis framework that facilitates the exploration and diagnosis of complex class boundaries
- A Way in Between: Locally Linear Separations



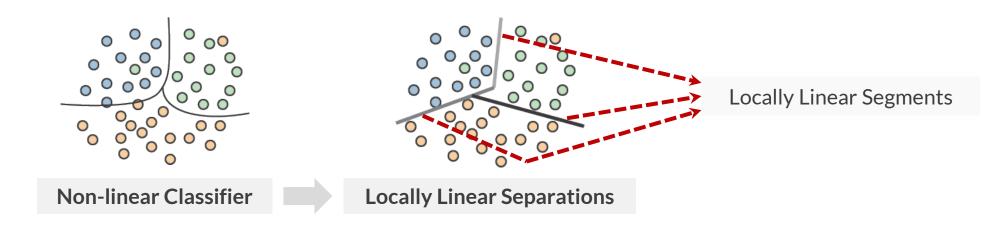
Easy-to-understand Linear

Ability to handle complex

non-linear class separations

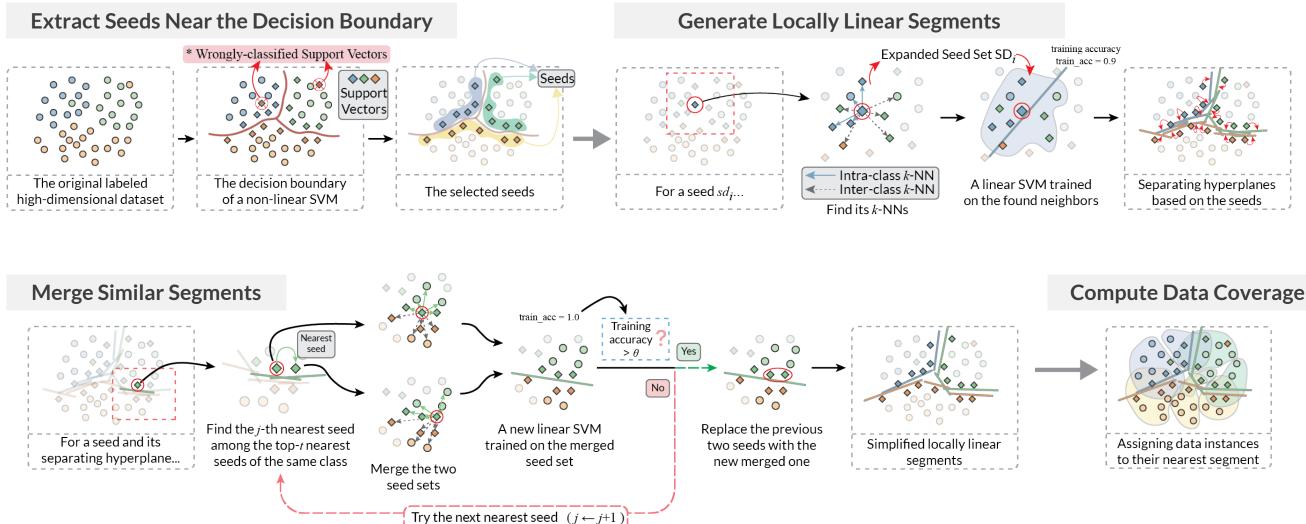
## **Locally Linear Segment**

- Motivation
  - Decision boundaries of classifiers as a tool to describe class separations
  - Local linearity analysis in machine learning (e.g. LIME<sup>[1]</sup>)
- Definition
  - A set of linear approximations extracted from the original decision boundary



[1] Ribeiro et al. "Why should I trust you?" Explaining the predictions of any classifier. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016.

## **Extraction of Locally Linear Segments**



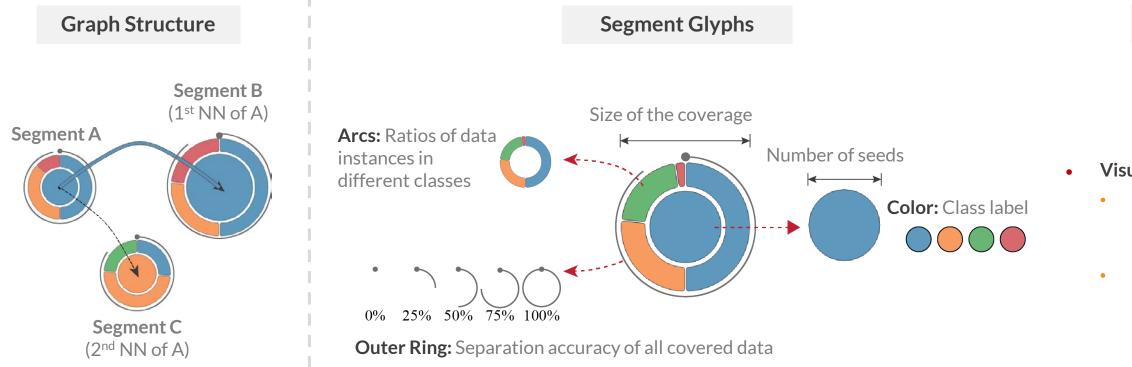


## **Visual Analytics Framework**

- Task 1: Macroscopic Analysis Overview of the locally linear segments
  - Show the number of segments and highlight the major ones
  - Reveal the coverage of data instances under each segment
  - Depict the locations of the segments and relationships among different segments
- Task 2: Microscopic Analysis Detailed analysis of specific segments
  - Examine the data distribution and separation near a segment
  - Show the primary features used for determining class separation
  - Exploring the neighboring segments
  - Trace a path between segments along decision boundaries

## **Segment Relation View**

- Segment Graph
  - Visualize the segment relationships as a graph structure



### Edges

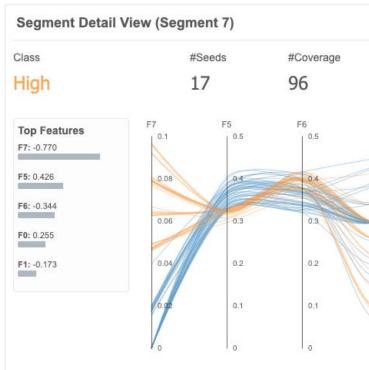
### Visual Encoding of Edges

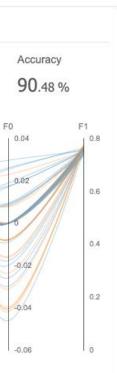
**Curvature:** cosine of angles between the separating hyperplanes

Thickness & Length: Distances between segments

# Microscopic Analysis Segment Detail View

- Details of Covered Data Instances
  - Number of the covered instances
  - Data distribution (with PCP)
  - Dominant features for separating the local region



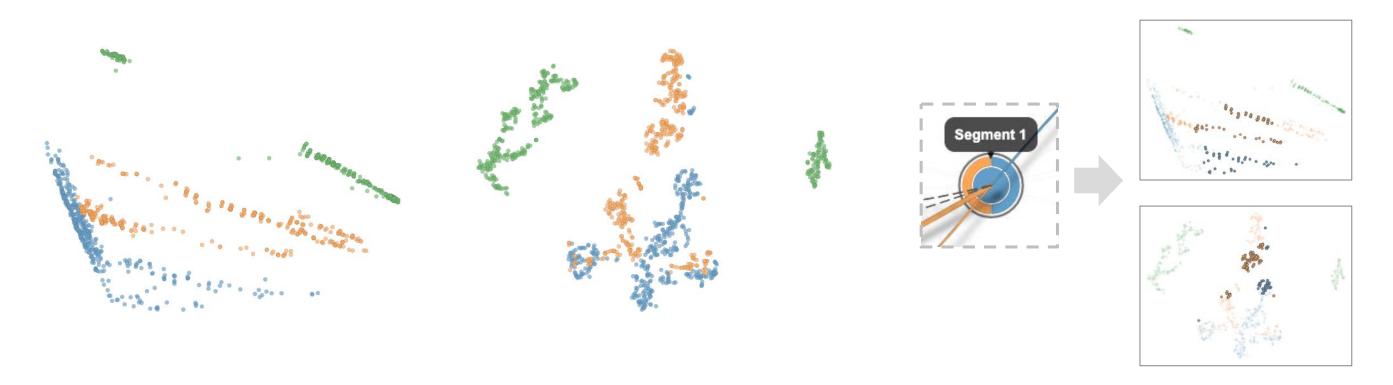


### Macroscopic Analysis **Projection View**

Linear Projection (PCA) Non-distorted view of separations

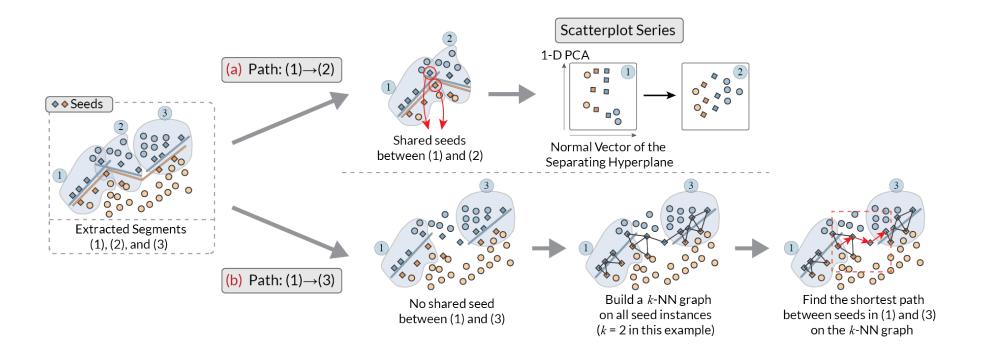
t-SNE Projection Initial impression of the distribution

**Linked Interaction** Highlight a specific segment



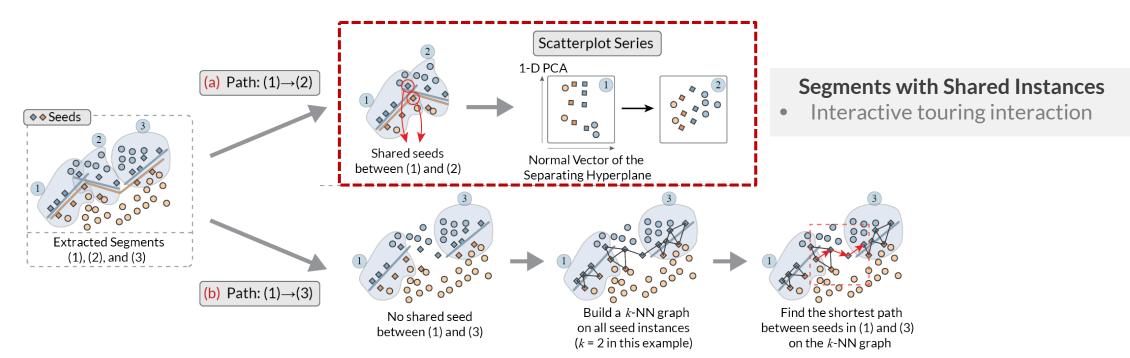
## **Path Exploration View**

- Goal
  - Present how two segments are connected with each other
  - Flexible traverse between segments



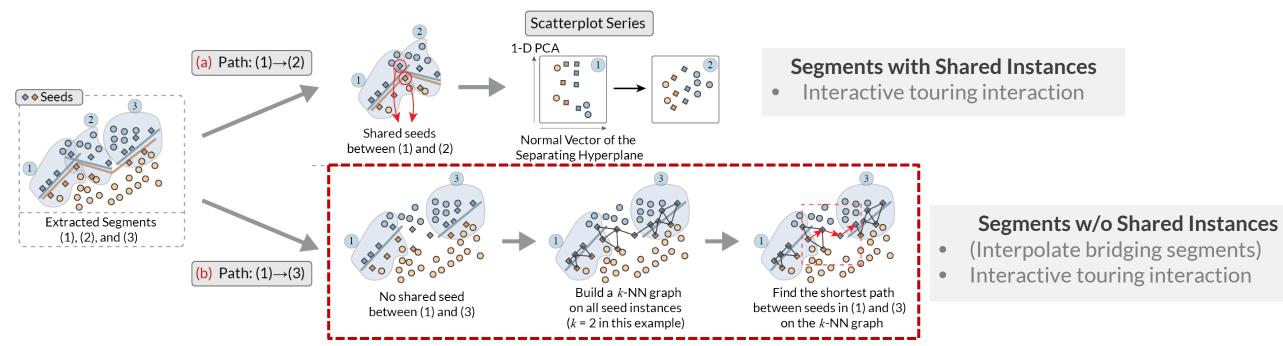
## **Path Exploration View**

- Goal
  - Present how two segments are connected with each other
  - Flexible traverse between segments



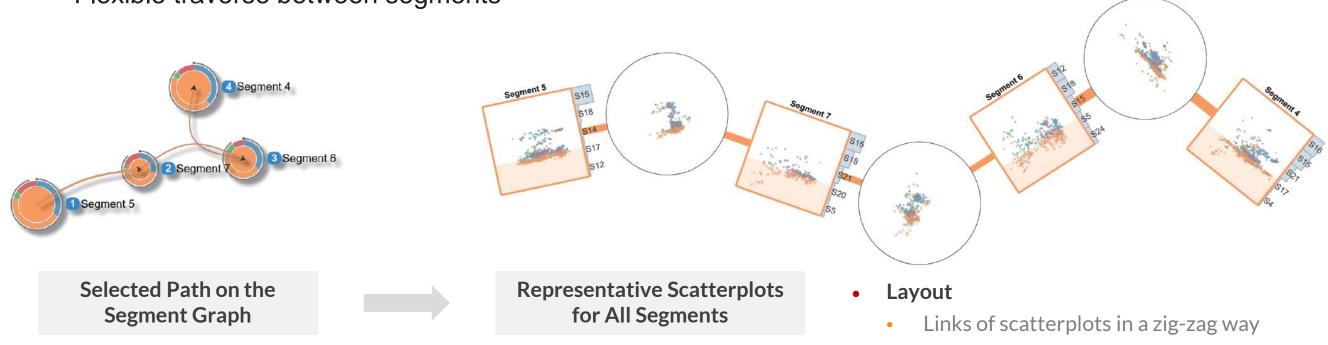
## **Path Exploration View**

- Goal
  - Present how two segments are connected with each other
  - Flexible traverse between segments



## **Path Exploration View**

- Goal
  - Present how two segments are connected with each other
  - Flexible traverse between segments



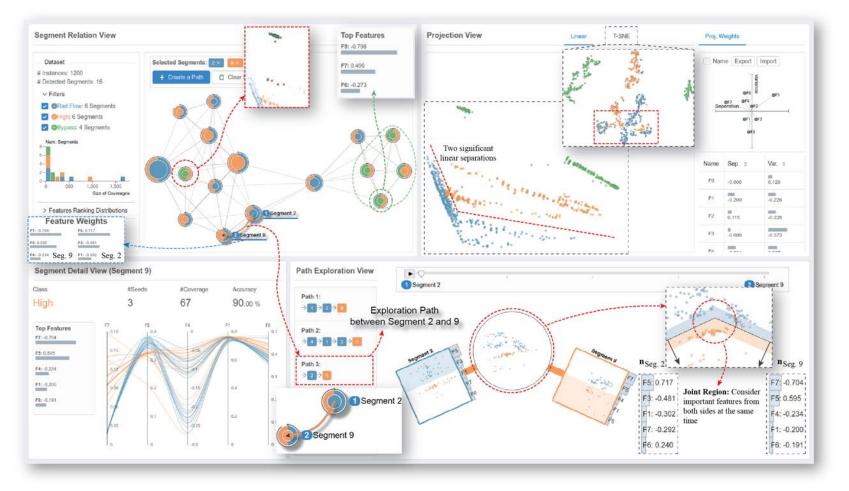
Interaction •

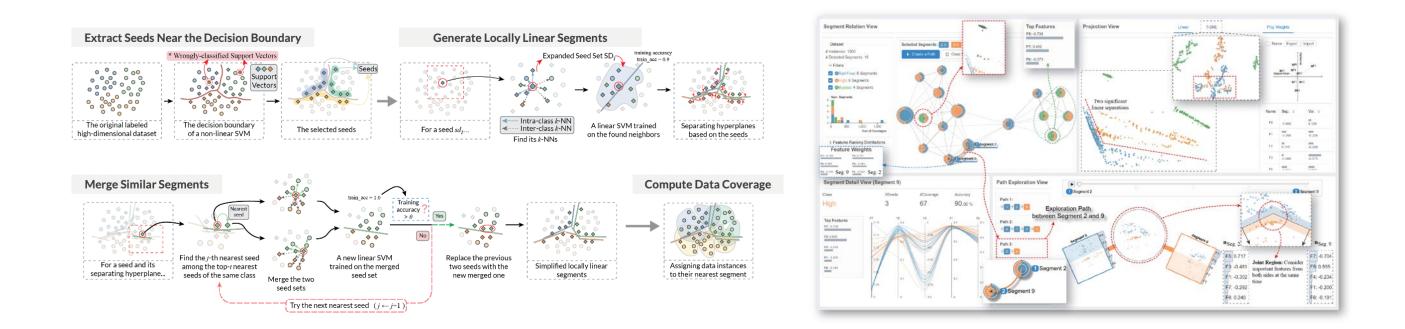
•

Touring interaction between representative scatterplots

## **Case Study**

- Shuttle StatLog Dataset
  - 9 Numerical sensor readings for deciding radiator positions
  - 3 Classes: Rad Flow, High, Bypass
  - Subsampled into 400 instances for each class





### **Visual Analysis of Class Separations with Locally Linear Segments**

Yuxin Ma, Ross Maciejewski @ VADER Lab, CIDSE, Arizona State University

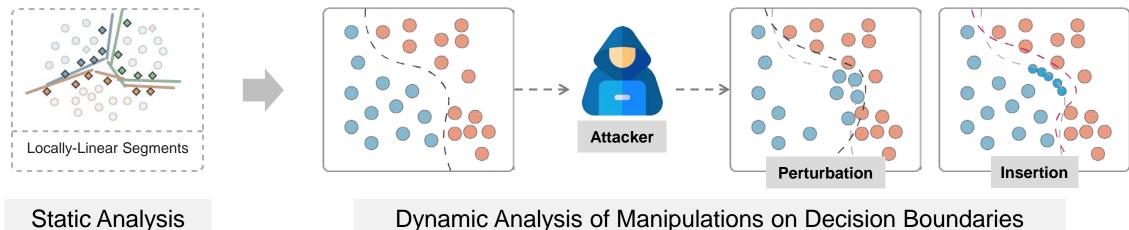
| Acknowledgement    | U.S. Department of Homeland Security (Grant Award 2017-ST-061-QA0001 and 17STQAC00001-0<br>National Science Foundation Program on Fairness in AI in collaboration with Amazon under av |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demo Available at: | https://github.com/wintericie/visual-analysis-class-boundary                                                                                                                           |

-03-03) award No. 1939725

## **Manipulating Decision Boundaries**

### Static Analysis -- Dynamic Analysis of (Malicious) Changes

**Comparing Decision Boundaries between Different Classifiers** 

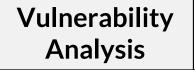


### Manipulating Decision Boundaries of Classifiers in a Malicious Way

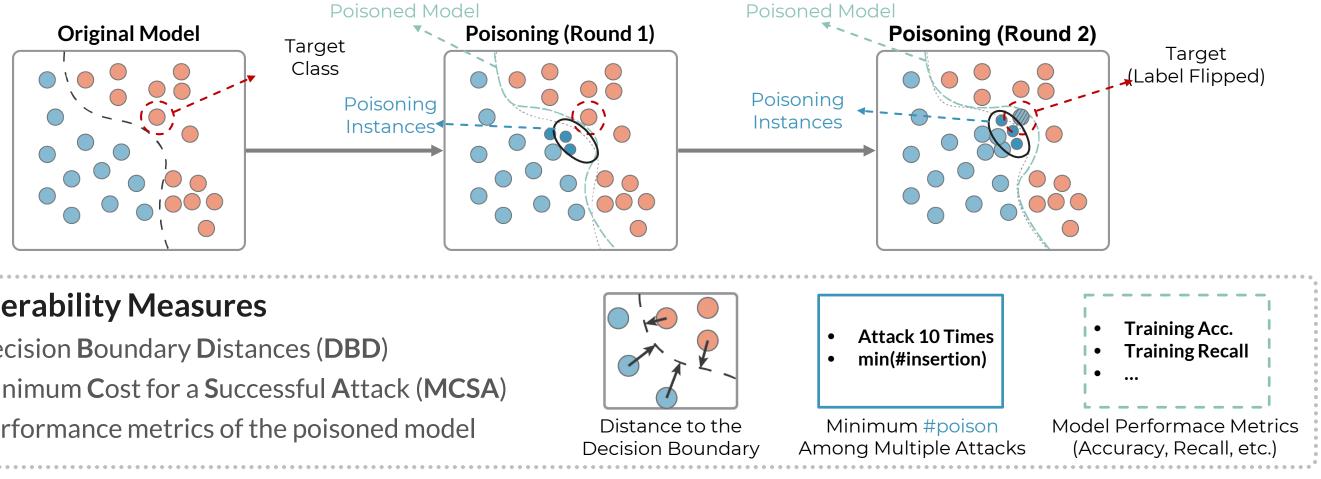
### **E.g.** Poisoning Attack

- Different decision boundaries (classifiers) when the training dataset is manipulated
- Can be utilized by attackers to control the predictions from the classifiers on purpose

# **Vulnerability Analysis**

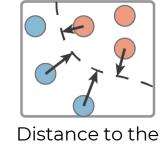


- **Core idea:** Prevent the target instance from being misclassified
  - Attack Algorithms: Binary-Search Attack & StingRay Attack



### **Vulnerability Measures**

- **Decision Boundary Distances (DBD)**
- Minimum Cost for a Successful Attack (MCSA)
- Performance metrics of the poisoned model





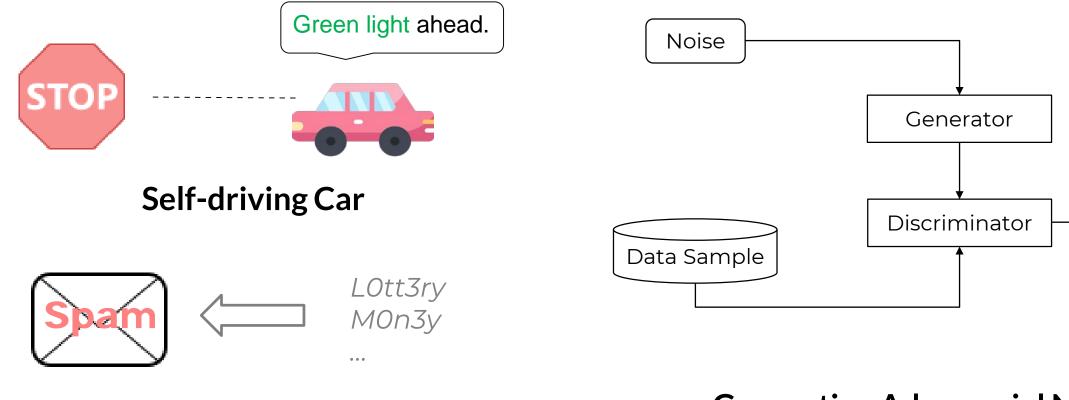
[1] Burkard et al. Analysis of causative attacks against syms learning from data streams. In Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics, pp. 31-36. ACM, 2017

[2] Suciu et al. When does machine learning fail? Generalized transferability for evasion and poisoning attacks. In Proceedings of the USENIX Security Symposium, pp.1299–1316, 2018.



#### Vulnerability Measures for Training Instances

### **Vulnerabilities in Machine Learning**



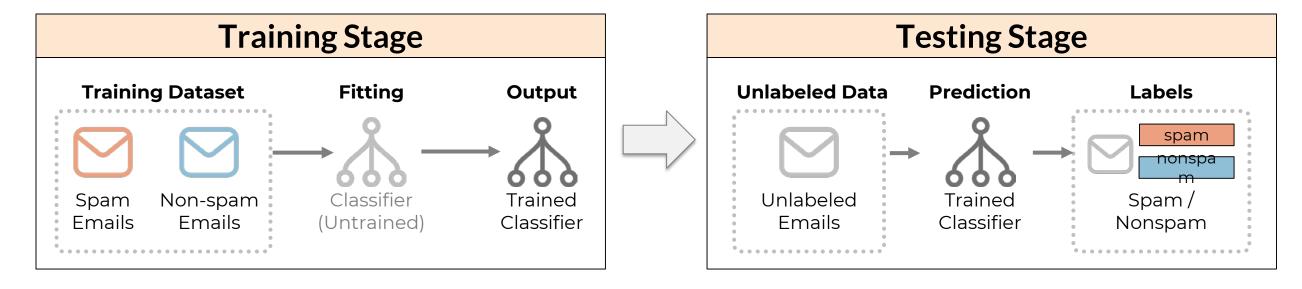
**Spam Filter** 

**Generative Adversarial Nets (GAN)** 

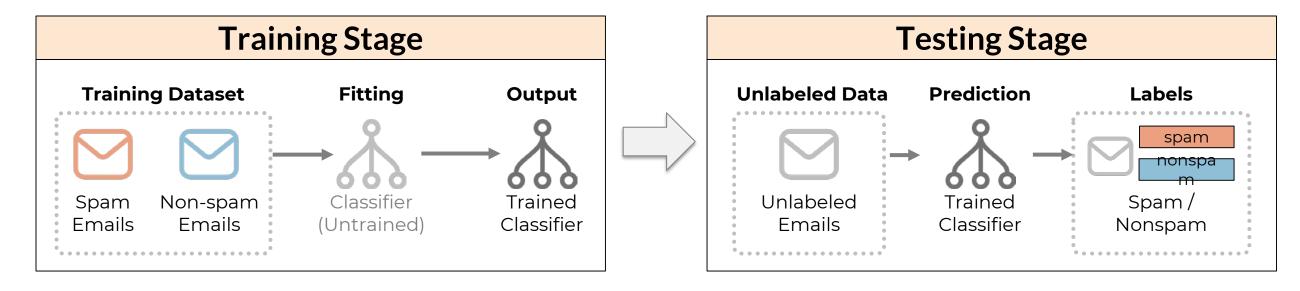
[1] Martinez et al., Driving style recognition for intelligent vehicle control and advanced driver assistance: A survey. IEEE Transactions on Intelligent Transportation Systems, 19(3):666–676, 2018. [2] Mei et al., Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. AAAI Conference on Artificial Intelligence, 2871–2877. [3] Goodfellow et al., Generative Adversarial Nets. Advances in Neural Information Processing Systems. 2014.

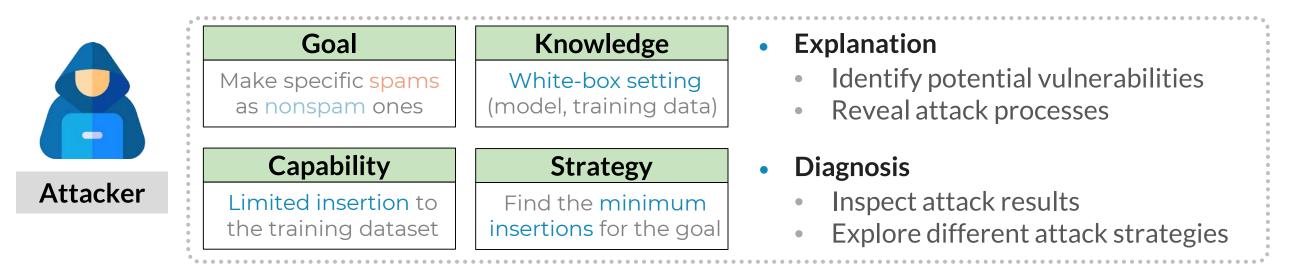


# **Example: Filtering Spam Emails**



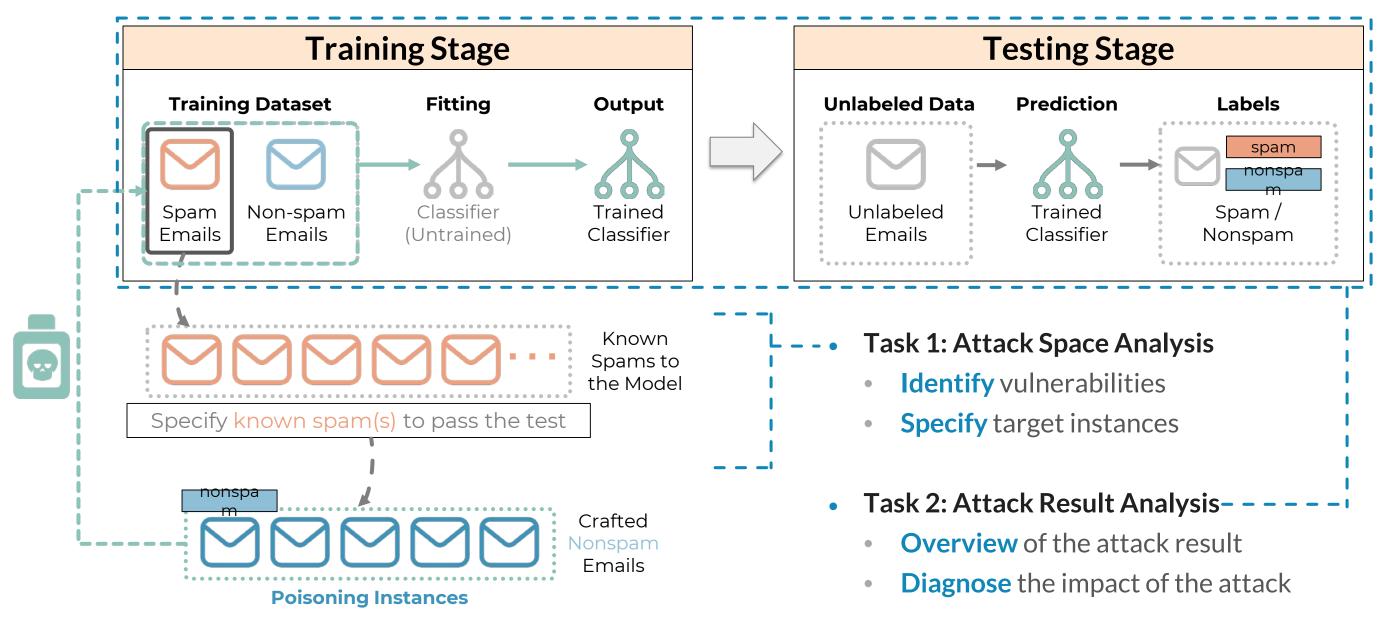
# **Example: Filtering Spam Emails**



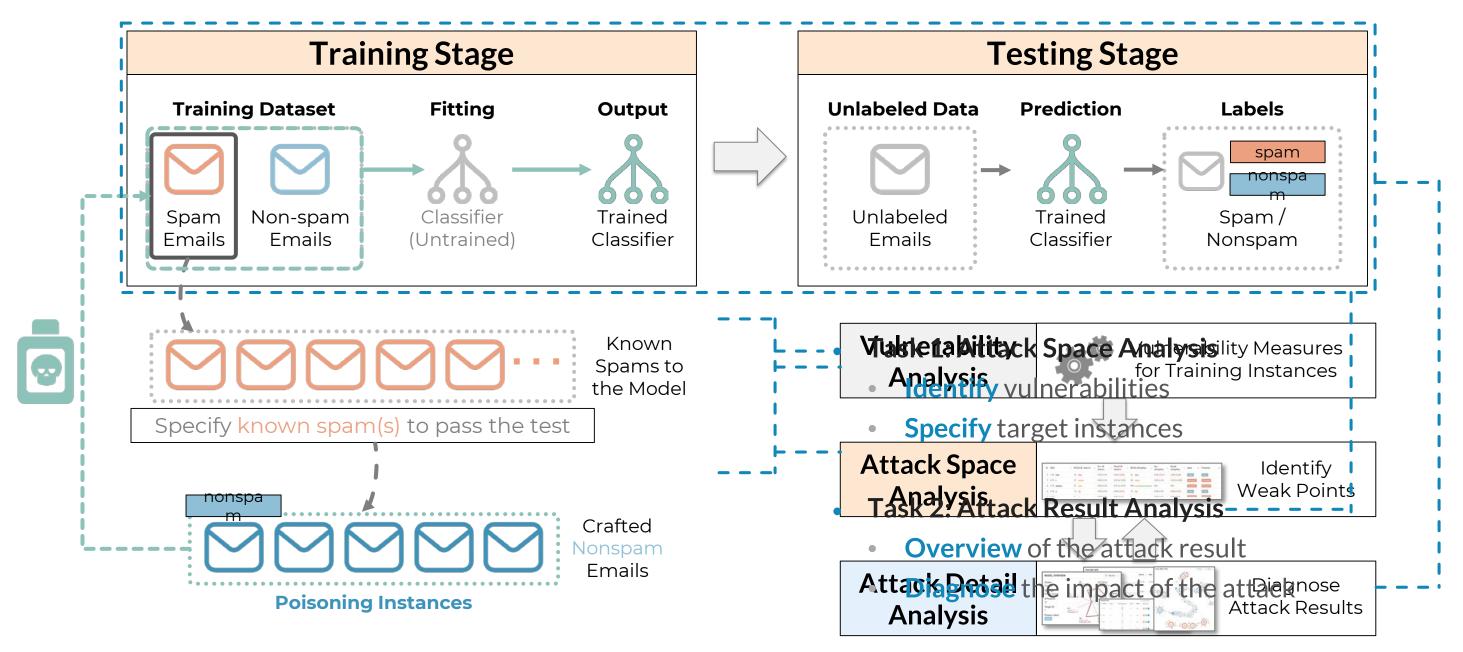




### Targetecal Proisoning Attack



### **Framework Overview**

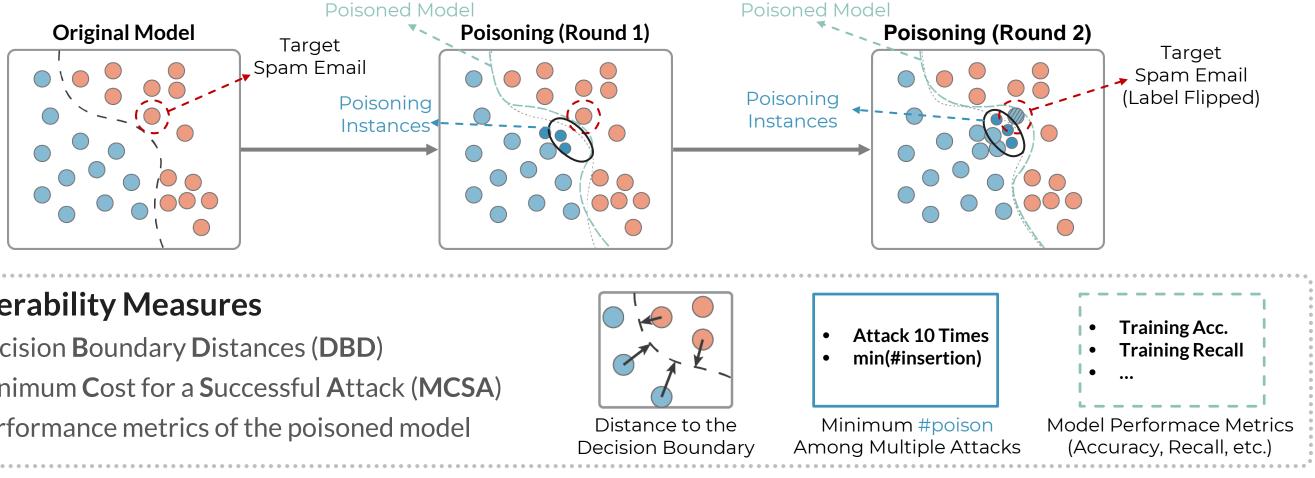


# **Vulnerability Analysis**



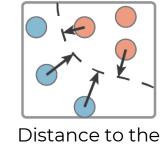


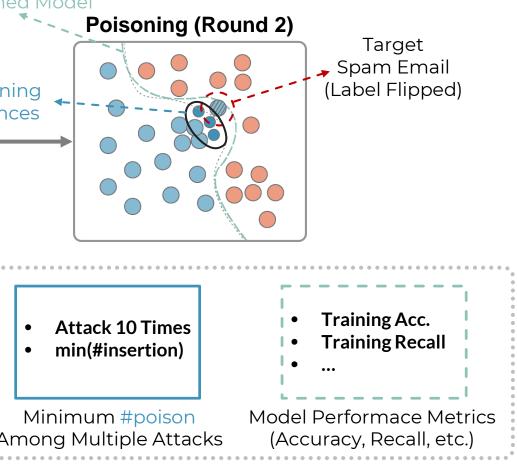
- **Core idea:** Prevent the target instance from being classified as Spam
  - Attack Algorithms: Binary-Search Attack & StingRay Attack



### **Vulnerability Measures**

- **Decision Boundary Distances (DBD)**
- Minimum Cost for a Successful Attack (MCSA)
- Performance metrics of the poisoned model





[1] Burkard et al. Analysis of causative attacks against syms learning from data streams. In Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics, pp. 31-36. ACM, 2017

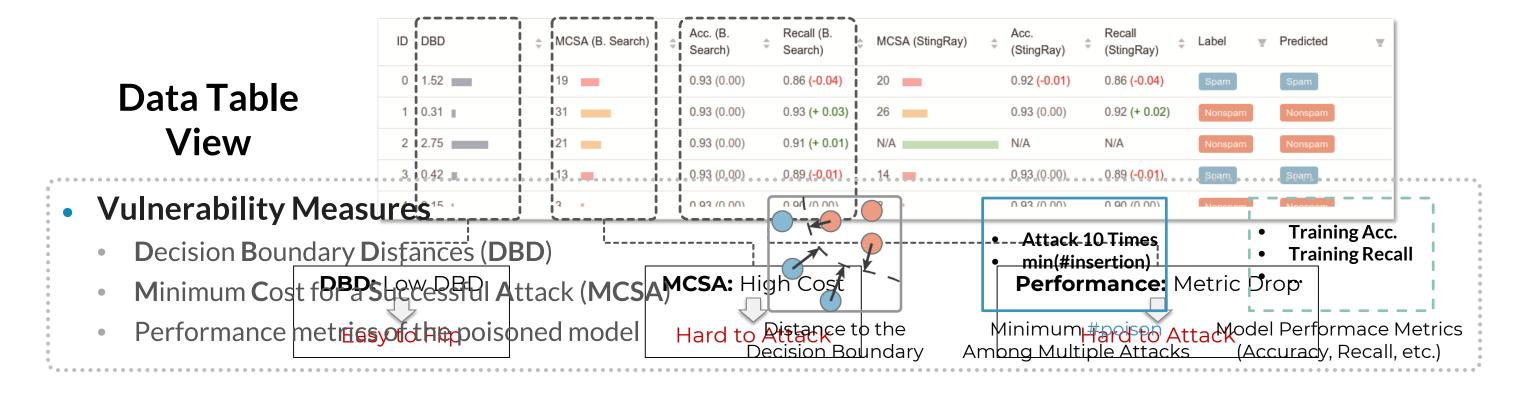
[2] Suciu et al. When does machine learning fail? Generalized transferability for evasion and poisoning attacks. In Proceedings of the USENIX Security Symposium, pp.1299–1316, 2018.



#### Vulnerability Measures for Training Instances

### **Attack Space Analysis**

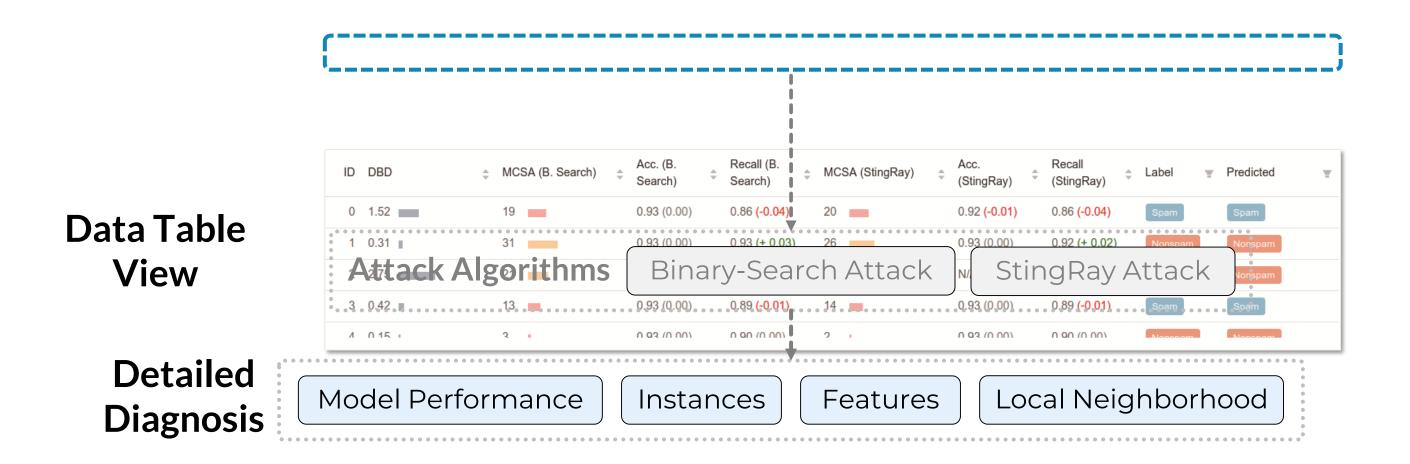


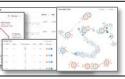


|        | Paul R  | KDL/http:// | An.<br>Stripher | and a    | Law - 1 | Patroni | • |
|--------|---------|-------------|-----------------|----------|---------|---------|---|
| -      | -       | -           | -               | 1001030  | 123     | -       |   |
| 1.00   | 100.000 |             |                 | 1011-120 | -       |         |   |
| -      | 400.044 | -           |                 | 2.0      | -       |         |   |
| iem, ' | -       |             | 1010.00         |          | 122     | -       |   |
|        |         |             |                 |          | -       | -       |   |

#### Identify Weak Points







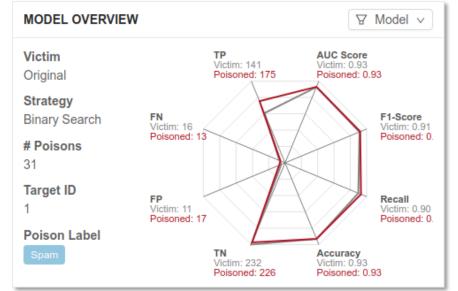
#### Diagnose Attack Results

Model Performance

Instances

Features

### **Model Overview**

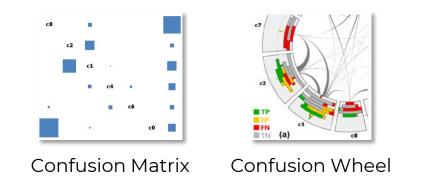


Radar Chart for Model Performances



- Victim Poisoned
- Performance metrics





- **Design Rationale** 

  - Easy to use

[1] Alsallakh et al. (2012). Reinventing the contingency wheel: Scalable visual analytics of large categorical data. IEEE TVCG. [2] Alsallakh et al. (2014). Visual Methods for Analyzing Probabilistic Classification Data. IEEE TVCG.



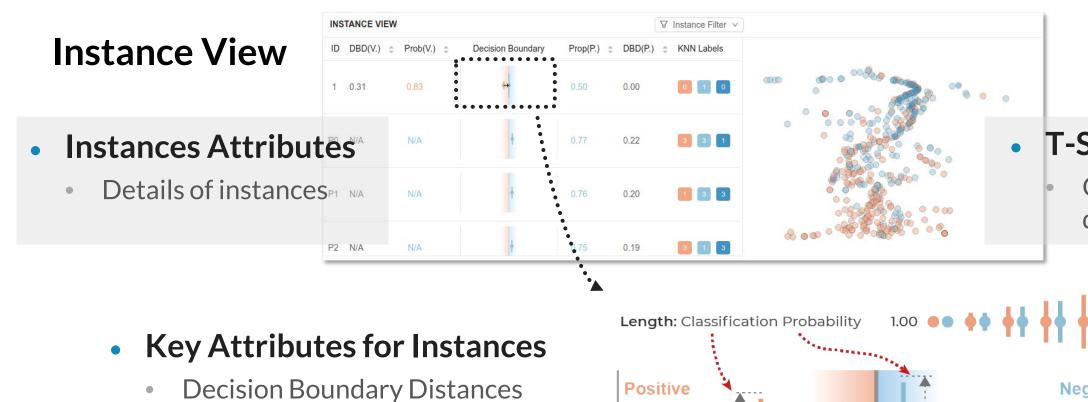
Local Neighborhood

### Suitable for comparing differences

Model Performance

Instances

Features



Class

Positive

Arrow: Victim → Poisoned

**Decision Boundary Distance** 

On the decision boundary

- Classification Probabilities
- Labels of k-NNs



# **T-SNE Projection**Overview of the data distribution



Model Performance

Instances

Features

### **Feature View**



#### **Data Distributions on Features**

- Instances in the spam / nonspam classes
- **Poisoning Instances**

### • Feature Importance Rankings

- In the victim model
- In the poisoned model
- Differences



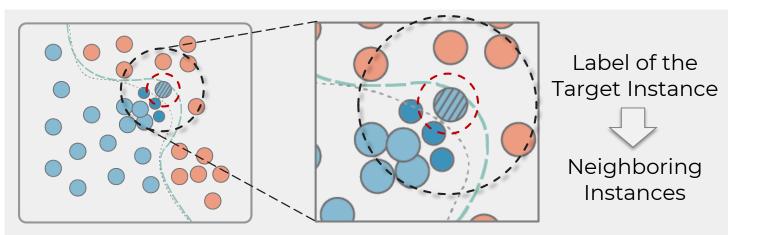
Local Neighborhood

Model Performance

Instances

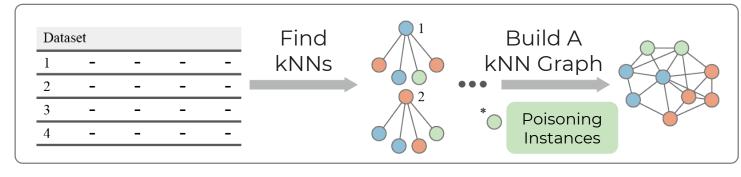
Features

### **Local Impact View**



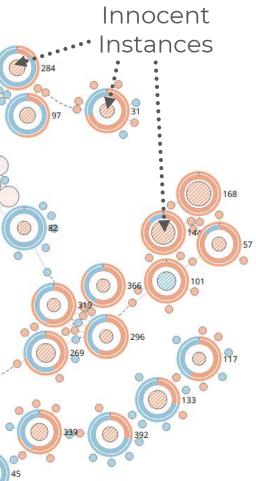
# Target Instance Poisoning Instances

### kNN Graph Building



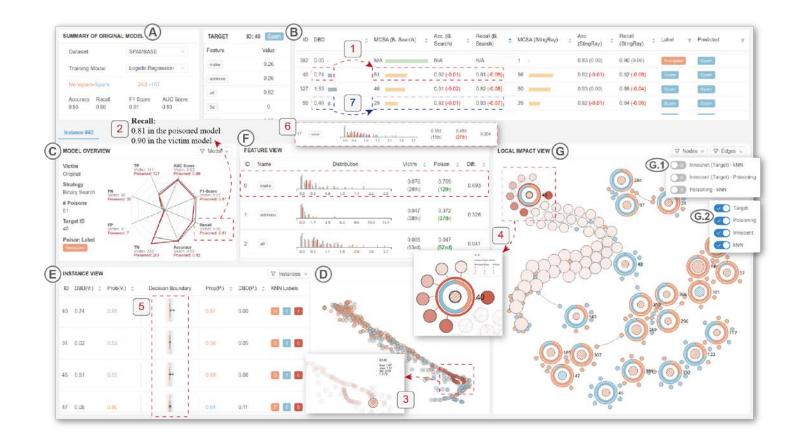


#### Local Neighborhood



# **Case Study**

- Spambase Email Data
  - Task: Binary Classification
  - 57 Dimensions
    - BoW vectors
  - Subsampled 400 Emails
    - 243 non-spam emails
    - 157 spam emails



### Explaining Vulnerabilities to Adversarial Machine Learning through Visual Analytics

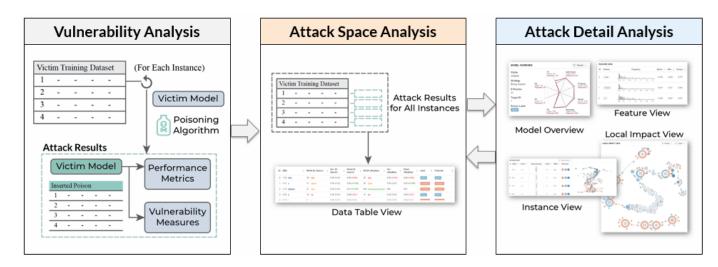
### Yuxin Ma, Tiankai Xie, Jundong Li, Ross Maciejewski

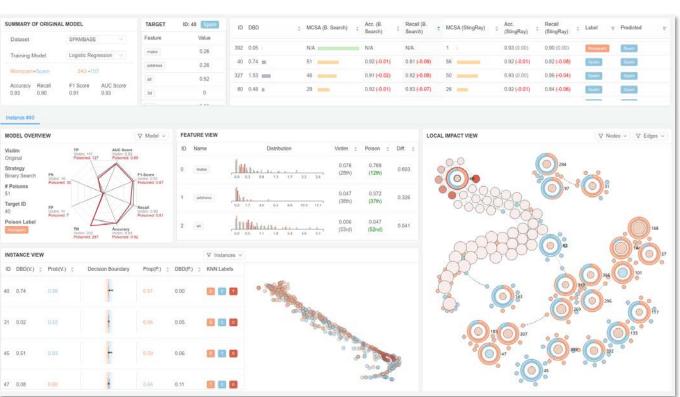
VADER Lab, CIDSE, Arizona State University

- **Code Available at:** https://github.com/VADERASU/visualanalytics-adversarial-attacks
- **Project Website:** http://vader.lab.asu.edu

### Acknowledgement

U.S. Department of Homeland Security (Grant Award 2017-ST-061-QA0001)





# **Graph-based Ranking**





| ÷   | Q adam                                                               |                  |               |  |  |  |
|-----|----------------------------------------------------------------------|------------------|---------------|--|--|--|
| Тор | Latest                                                               | People           | Photos        |  |  |  |
| 6   | Adam Wathan<br>@adamwathan                                           |                  |               |  |  |  |
|     | Creator of @tailwindcss. Host of @fullstacki<br>Slayer. Austin 3:16. |                  |               |  |  |  |
|     | Adam Taylor<br>@EposVox                                              |                  |               |  |  |  |
|     | Stream Professo<br>the best tech ed<br>Business: adam(               | ucation platform | m for creator |  |  |  |
| 3.  | Adam Schiff 🤣<br>@RepAdamSchif                                       | ff               |               |  |  |  |

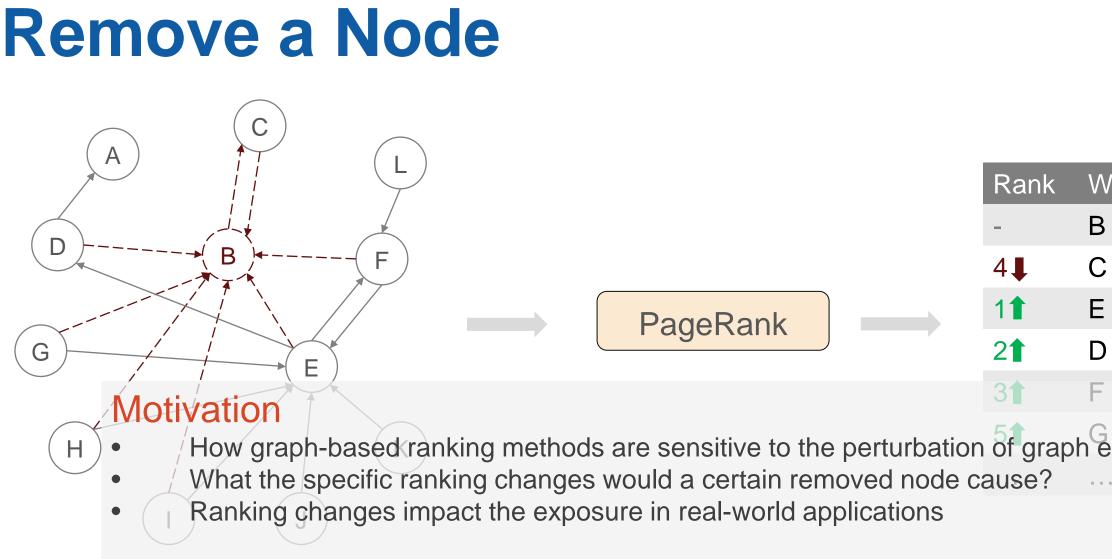
Representing California's 28th Congressional District. Chairman of the House Intelligence Committee (@HouseIntel

### **Recommendation System**

[1] Page, Lawrence, et al. The PageRank citation ranking: Bringing order to the web. Stanford InfoLab, 1999. [2] Gori, Marco, et al. "Itemrank: A random-walk based scoring algorithm for recommender engines." IJCAI. Vol. 7. 2007.







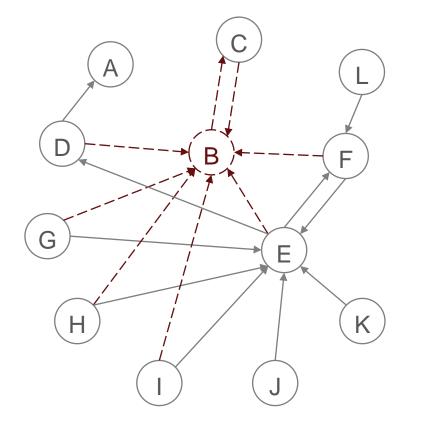
[1] "Pagerank". En.Wikipedia.Org, 2020, https://en.wikipedia.org/wiki/PageRank. Accessed 17 Aug 2020.

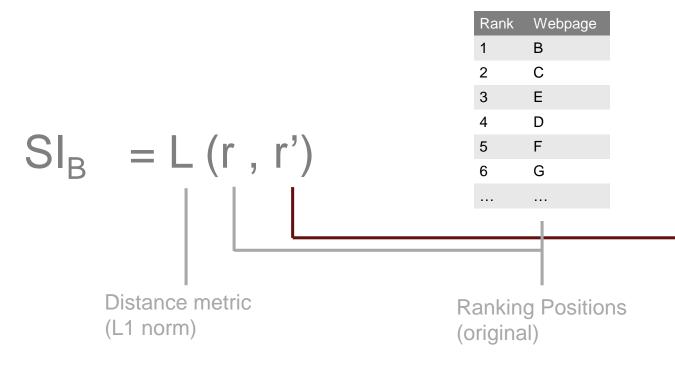
[2] Singh, Ashudeep, and Thorsten Joachims. "Fairness of Exposure in Rankings." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018):

| Vebpage   | PR value |
|-----------|----------|
| 8         | removed  |
|           | 0.032    |
| E         | 0.308    |
| )         | 0.163    |
|           | 0.163    |
| elements? | 0.032    |
|           |          |
|           |          |

### **Sensitivity Index**

- The degree of the ranking method's sensitivity to the perturbation (removal)
- Given any graph-ranking method

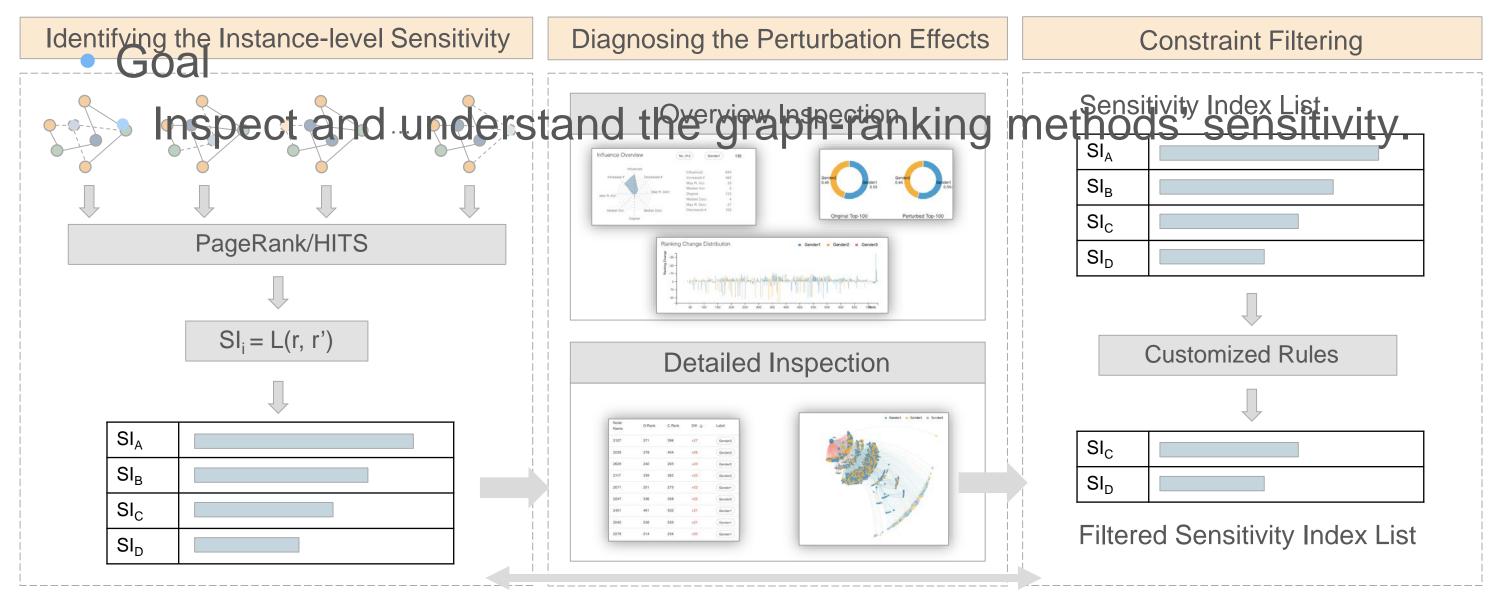




| Rank | Webpage |
|------|---------|
| -    | В       |
| 4    | С       |
| 1    | Е       |
| 2    | D       |
| 3    | F       |
| 5    | G       |
|      |         |

### Ranking Positions (perturbated)

# **Visual Analytics Framework**



### Auditing the Sensitivity of Graph-based Ranking with Visual Analytics

### <u>Tiankai Xie<sup>1</sup></u>, Yuxin Ma<sup>1</sup>, Hanghang Tong<sup>2</sup>, My T. Thai<sup>3</sup>, Ross Maciejewski<sup>1</sup>

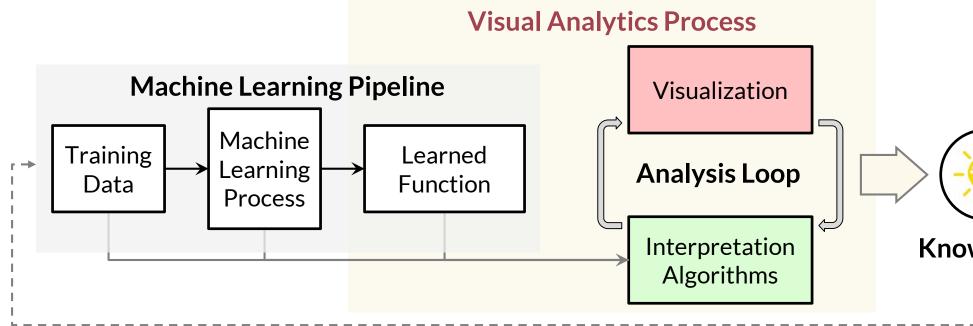
- 1. VADER Lab, CIDSE, Arizona State University
- 2. University of Illinois at Urbana-Champaign
- 3. University of Florida
- Code Available at: https://github.com/VADERASU/auditing-sensitivitygraph-ranking
- **Project Website:** http://vader.lab.asu.edu

### Acknowledgement

U.S. Department of Homeland Security under Grant Award 2017-ST-061-QA0001 and 17STQAC00001-03-03, and the National Science Foundation Program on Fairness in AI in collaboration with Amazon under award No. 1939725



# Visual Analytics in Explainable Al



- Explainable AI (XAI) in the VADER Lab @ ASU
  - Data Preprocessing: Visual Inspection of Decision Boundaries (TVCG 2020)
  - Interpretable Model Training: Open-box Exploration of SVMs (CVMJ 2017)
  - Security: Visual Explanation of Adversarial Machine Learning (VAST 2019), Graph Auditing (VAST 2020)
  - Reusability: Visual Analysis of Transfer Learning Processes (VAST 2020)

