CPPM: Chi-squared Progressive Photon Mapping

Zehui Lin, Sheng Li, Xinlu Zeng, Congyi Zhang, Jinzhu Jia, Guoping Wang, Dinesh Manocha
Outline

• Background
• Challenge
• Key Idea
• Algorithm
• Results
• Limitation
• Summary
• Photon Mapping [Jensen 1996] can solve S-D-S paths:
 • Light sources emit photons
 • Collect photons to estimate radiance
• SPPM [Hachisuka and Jensen 2009] converges to the correct pixel measurement:
 • Multiple iterations
 • Bandwidth converges to infinitesimal
Background

Progressive Photon Mapping: A Probabilistic Approach
[Knaus and Zwicker 2011]

Adaptive Progressive Photon Mapping
[Kaplanyan and Dachsbacher 2013]

Deep Kernel Density Estimation for Photon Mapping
[Zhu et al. 2020]
Challenge
Challenge

• Challenge: Blur and Noise
 • Blur:
 • Caused by bias
 • Bandwidth too large
 • Noise:
 • Caused by variance
 • Bandwidth too small
• Difficult to eliminate them at the same time
Key Idea: Benefits of Uniform Distribution

• Uniformly distributed photons have advantages
• Unnecessary to use a smaller bandwidth
Key Idea: Chi-squared Test on Photons

\[R_i + 1 = R_i \]

Reduce \(R_i \)

Keep \(R_i \)

Chi-squared Test

Non-uniform Distribution

Uniform Distribution
Key Idea: Bandwidth Reduction Scheme

• A novel bandwidth reduction scheme to work with chi-squared test
Algorithm: Pipeline

Photon Pass

- photon tracing and collection
- photon distribution chi-squared test
- flux accumulation
- bandwidth reduction
- Pixel measurement estimation

START
Eye Pass

Distributed Ray Tracing Pass

Next iteration
• How to define a uniform distribution on multiple searching areas?
• A unified space can be a solution
• How to define a uniform distribution on multiple searching areas?
• A unified space can be a solution
• Align the searching areas
• How to define a uniform distribution on multiple searching areas?
• A unified space can be a solution
• Align the searching areas
• How to define a uniform distribution on multiple searching areas?
• A unified space can be a solution
• Align the searching areas
Algorithm: Theoretical Foundation

- How to define a uniform distribution on multiple searching areas?
- A unified space can be a solution
- Align the searching areas
Algorithm: Chi-squared Test on Photons

- Partition the disc
- Count photons in sectors
- Calculate chi-squared statistic to identify uniform distribution

\[R_i \]

Sector

Annulus
Algorithm: Conditional Bandwidth Reduction

Photons

- Uniformly distributed
 \[R_{i+1} = R_i \]
- Not uniformly distributed
 \[R_{i+1} < R_i \]
Algorithm: Conditional Bandwidth Reduction

Photons

Uniformly distributed

Not uniformly distributed

\[R_{i+1} = R_i \]

\[R_{i+1} < R_i \]

• How to get enough samples for the chi-squared test?

![Graph showing Bandwidth vs Iteration]

- SPPM
Photons

Minimum sample size

Enough Photons

Uniformly distributed

Not uniformly distributed

$R_{i+1} = R_i$

$R_{i+1} < R_i$

Algorithm: Bandwidth Reduction Scheme

Uniform distribution

Bandwidth

Iteration

SPPM

CPPM
CPPM Pipeline

Enough Photons? (Yes/No)

Conditional Bandwidth Reduction

Uniform Distribution? (Yes/No)

Bandwidth Reduction

Yes

No
Algorithm: Convergence

• Worst case:

\[R_N = O\left(N^{-\frac{1}{2}} \log \beta \frac{1}{k} \right) \]

• equivalent to SPPM

• Best case:

Bias = 0
Variance = \(O(N^{-1}) \)
Exceptional Cases of the Chi-squared Test

• The chi-squared test may get wrong results:

1. Reject a uniform distribution
 - Acceptable

2. Not reject a non-uniform distribution
 - Critical

Solution: keep testing
Results

(a) Bandwidth (point A)

- SPPM
- CPPM
- APPM

Bandwidth vs. Iteration graph.
Results

(b) Error (Point A)
Chi-squared test fails to reject a non-uniform distribution
Results

(d) Error (Point B)
Results

• How many pixels can find a uniform distribution?
Results

• How many pixels can find a uniform distribution?
• Bandwidth of SPPM:
Results

• How many pixels can find a uniform distribution?
• Bandwidth of CPPM:
• Most pixels can find a uniform distribution
Results

APPM (red) APPM (green) APPM (yellow)

CPPM (red) CPPM (green) CPPM (yellow)
Limitation

- Uniformly distributed photons are not always good
- If the contribution of the photons depends on their location

Textured Spotlight:
• If the contribution of the photons is related to their location
• Emit the photons proportional to the luminance:
Summary

Contributions:

+ Unnecessary to converge the bandwidth to infinitesimal
+ Reveal the benefits of uniformly distributed photons
+ Introduce the chi-squared test to check the photons
+ Propose a pipeline to robustly find a desired bandwidth

Future Work:

★ Take contribution of photons into account
★ Make bandwidth expansion possible
★ Combine APPM and CPPM in a hybrid manner
★ Integrate CPPM with other sampling-based techniques
Q & A

Contact: zehui@pku.edu.cn
Project Page: https://bactlink.github.io/CPPM
Thank you!

Contact: zehui@pku.edu.cn
Project Page: https://bactlink.github.io/CPPM