

MaterialGAN: Reflectance Capture using a Generative SVBRDF Model

Yu Guo¹, Cameron Smith², Miloš Hašan², Kalyan Sunkavalli² and Shuang Zhao¹

> ¹University of California, Irvine ²Adobe Research

Material acquisition

Related works

Dana and Wang 2004

Weyrich et al. 2006

Spherical Gantry

High quality Need dense captures with complex devices

Related works

Aittala et al. 2015

Hui et al. 2017

Li et al. 2017

Li et al. 2018

Deschaintre et al. 2019

Gao et al. 2019

One or more images captured by handphone Quality is not good as using specialized devices

SVBRDF

Inputs

SVBRDF maps

Challenges

Under-constrained

Challenges

□ User interaction

- □ Linear low-dimensional BRDF models
- **Prior :** Stationary stochastic textures
 - □ Learned with Neural Network
 - ...

Challenges

Unnatural SVBRDF maps

Our technique

Need a good prior to make SVBRDF maps look more natural

GAN review

GAN Goodfellow et al. 2014

Image

StyleGAN2 Karras et al. 2019 Video

MoCoGAN Tulyakov et al. 2018

3D shape

MC-GAN Li et al. 2019

Our method

Please check our main paper and supplemental materials for detailed analyses and comparisons

MaterialGAN = StyleGAN2 + SVBRDF

Z: latent vector of MaterialGAN

MaterialGAN

SVBRDF maps

Rendering

Training details of MaterialGAN

- □ Treat SVBRDF maps as 9-channel "image"
- □ 100,000 training data (including augmentation) from Deschaintre et al. 2018
- □ Resolution 256x256
- □ Tensorflow
- □ 8× Nvidia Tesla V100, 5 days

MaterialGAN latent space

Final optimization pipeline

Results

Please check our main paper and supplemental materials for detailed analyses and comparisons

Implementation details

- □ Single point source light, collocated with the camera
- □ Support single input to 25 inputs (GPU with 16GB memories)
- □ 39 synthetic testing data from Deschaintre et al. 2018 and Adobe Stocks dataset
- □ 39 cellphone captures for testing
- Pytorch
- □ Titan RTX, 2000 iterations takes about 2 minutes

Optimization results

Inputs

Optimized maps

Renderings

Reference (Inputs)

Reference (Novel view)

Estimated Maps

Ours (Optimized)

Ours (Novel view)

Wood

Reference (Inputs)

Reference (Novel view)

Ours (Optimized)

Ours (Novel view)

Estimated Maps

Leather

Ours (Optimized)

Ours (Novel view)

Reference (Inputs)

Reference (Novel view)

Ours (Optimized)

Ours (Novel view)

Book

Reference (Inputs)

Reference (Novel view)

.... Prince

Ours (Optimized)

Ours (Novel view)

Prince

Comparison with [Gao et al. 2019]

Please check our main paper and supplemental materials for detailed analyses and comparisons

Ours is less sensitive to initialization

Ours is not require post-refinement to get sharp maps

Latent Space Interpolation

- □ Our model relies on simple BRDF model
- □ Flat surface only
- □ Relies on known illumination
- Dataset is not general enough

Conclusion

SVBRDF acquisition from a small number of input captures with smartphone

An optimization framework with a powerful material prior (MaterialGAN)

High quality SVBRDF reconstruction without any good initialization

Thank you!

□ Anonymous reviewers

□ TJ Rhodes from Adobe Research for help with material capture hardware setup

□ NSF IIS-1813553

Project page

Github repo