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Overview
• Light samples still too sparse to capture all frequency

• Goal: super-sample the LEDs on the light stage

captured images under adjacent LEDs our result
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• Deep reflectance field

Meka, Abhimitra, et al. "Deep reflectance fields: high-quality facial reflectance field inference from color gradient illumination." 
SIGGRAPH 2019

Predict point light relit images from two special lighting

Previous work
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Method

• Training

• Trained on 16 different OLAT image sets

• Supervise the output with L1 loss

• Train the network progressively
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Different number of lights on the light stage

n=100n=150

n=200n=250n=302 n=302

Work well on n >= 150 
Small ghosting at n = 100
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Conclusion

• Super-resolves the lighting pattern on the light stage.

• Two key techniques:

• “Dropout” on input neighbours;

• Alias-free weighting on network activations.
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