Light Stage Super-Resolution: **Continuous High-Frequency Relighting**

- Tiancheng Sun¹, Zexiang Xu¹, Xiuming Zhang², Sean Fanello³, Christoph Rhemann³, Paul Debevec³, Yun-Ta Tsai⁴, Jonathan T. Barron⁴, Ravi Ramamoorthi¹

¹UC San Diego, ²MIT, ³Google, ⁴Google Research

Portrait Acquisition

Portrait Acquisition

Overview One-Light-At-a-Time scans (OLAT)

- Light Stage:

Capture one-light-at-a-time (OLAT) image set with ~300 LEDs

- Light Stage:

Lights on Light Stage

Capture one-light-at-a-time (OLAT) image set with ~300 LEDs

Captured Image

captured images under adjacent LEDs

captured images under adjacent LEDs

relit image

Overview Light samples still too sparse to capture all frequency

captured images under adjacent LEDs

relit image

- Light samples still too sparse to capture all frequency
- Goal: super-sample the LEDs on the light stage

captured images under adjacent LEDs

our result

Previous work

Previous work

• Single image portrait relighting

(a) Input image and estimated lighting

(b) Rendered images from our method under three novel illuminations

Sun, Tiancheng, et al. "Single Image Portrait Relighting." SIGGRAPH 2019

Previous work • Single image portrait relighting Portrait relighting under natural illumination

(a) Input image and estimated lighting

(b) Rendered images from our method under three novel illuminations

Sun, Tiancheng, et al. "Single Image Portrait Relighting." SIGGRAPH 2019

Previous work

Previous work

Deep image-based relighting

(a) Input images under directional lights

Xu, Zexiang, et al. "Deep image-based relighting from optimal sparse samples." SIGGRAPH 2018

(b) Ground truth under a novel directional light

(c) Our result under a novel directional light

Previous work Deep image-based relighting capture 5 images and do relighting via neural network

(a) Input images
 under directional lights

Xu, Zexiang, et al. "Deep image-based relighting from optimal sparse samples." SIGGRAPH 2018

(b) Ground truth under a novel directional light

(c) Our result under a novel directional light

Previous work

Previous work Deep reflectance field

Meka, Abhimitra, et al. "Deep reflectance fields: high-quality facial reflectance field inference from color gradient illumination." SIGGRAPH 2019

Previous work Deep reflectance field Predict point light relit images from two special lighting

Meka, Abhimitra, et al. "Deep reflectance fields: high-quality facial reflectance field inference from color gradient illumination." SIGGRAPH 2019

OLAT data

OLAT data

OLAT data

neural network

light direction

OLAT data

neural network

light direction

relit under arbitrary light direction

Query light

- Query light
- O Neighbor lights

neighbor captured images (light ID and weight at bottom corner)

- Query light
- O Neighbor lights

123 0.080 ſ

94 0.124

150 0.113

neighbor captured images (light ID and weight at bottom corner) light direction

- Query light
- O Neighbor lights

123 0.080 ſ

94 0.124

150 0.113

neighbor captured images (light ID and weight at bottom corner) light direction

- Query light
- O Neighbor lights

Lights on Light Stage

Neural Network

neighbor captured images (light ID and weight at bottom corner) light direction

- Query light
- O Neighbor lights

Lights on Light Stage

predicted image

Input light selection

Input light selection

Input light selection

Testing

Input light selection

Training $(\mathbf{x}) \quad (\mathbf{x}) \quad \mathbf{x} \quad \mathbf{x$ $(\mathbf{x}) \quad (\mathbf{x}) \quad ($ N distance

Testing

Input light selection: Dropout during training

Training $(\mathbf{x}) \quad (\mathbf{x}) \quad \mathbf{x} \quad \mathbf{x$ () () () () () () () () () () () () $(\mathbf{x}, \mathbf{y}, \mathbf{y}) \in \mathbf{A} \cap \mathbf{A} \cap$ distance

Input light selection: Dropout during training

Training

Testing

Input light selection: Dropout during training

Testing

Input light selection: Dropout during training

Alias-Free Pooling

Alias-Free Pooling

Alias-Free Pooling

W = 0

Input set extent
Query light & trajectory
Input light

Light entering input setLight exiting input set

Input or label with c channels and n images (or 1 image)

Activations with c channels and n images (or 1 image)

(k x k) Conv Layer

Alias-Free Pooling

2x bilinear upsampling

Concatenation

Loss

Spatial Resolution

Input or label with c channels and n images (or 1 image)

Activations with c channels and n images (or 1 image)

Spatial Resolution

(k x k) Conv Layer

Alias-Free Pooling

2x bilinear upsampling

Concatenation

Input or label with c channels and n images (or 1 image)

С c n

Activations with c channels and n images (or 1 image)

 $\hat{\boldsymbol{\ell}}$

Input or label with c channels and n images (or 1 image)

Activations with c channels and n images (or 1 image)

- Training
 - Trained on 16 different OLAT image sets
 - Supervise the output with L1 loss
 - Train the network progressively

AT image sets L1 loss

Results

Ours

Input images

Lights on Light Stage

Results

Ours

Input images

Lights on Light Stage

Lights on Light Stage

Ours

Lights on Light Stage

Ours

Lights on Light Stage

Ours

Lights on Light Stage

Ours

Lights on Light Stage

Ours

Lights on Light Stage

Ours

Lights on Light Stage

Ours

Lights on Light Stage

Ours

Lights on Light Stage

Ours

Different number of lights on the light stage

n=302

n=150

n=250

n=100

Different number of lights on the light stage

n=302

n=150

n=250

n=100

Different number of lights on the light stage

n=302

n=150

n=250

n=100

Work well on $n \ge 150$ Small ghosting at n = 100

Results: Applications Precise directional light relighting

Lights on Light Stage

Ours

Results: Applications Precise directional light relighting

Lights on Light Stage

Ours

Results: Applications Shadow softness control

Ours

Results: Applications Shadow softness control

Ours

Super-resolves the lighting pattern on the light stage.

- Super-resolves the lighting pattern on the light stage.
- Two key techniques:

- Super-resolves the lighting pattern on the light stage.
- Two key techniques:
 - "Dropout" on input neighbours;

- Super-resolves the lighting pattern on the light stage.
- Two key techniques:
 - "Dropout" on input neighbours;
 - Alias-free weighting on network activations.

Acknowledgement

Acknowledgement

- This work was funded in part by
 - Google Fellowship
 - NSF grants 1617234, 1703957
 - ONR grants N000141712687 and N000142012529
 - Ronald L. Graham Chair
 - UC San Diego Center for Visual Computing.
- Thanks to all anonymous volunters in the dataset.
- Thanks to all anonymous reviewers for the valuable feedback.

Light Stage Super-Resolution: Continuous High-Frequency Relighting

Light Stage Super-Resolution: Continuous High-Frequency Relighting

