

Pre-recorded sessions: From 4 December 2020 Live sessions: 10 – 13 December 2020

SA2020.SIGGRAPH.ORG #SIGGRAPHAsia | #SIGGRAPHAsia2020

Functional Optimization of Fluidic Devices with Differentiable Stokes Flow

Tao Du Kui Wu Andrew Spielberg Wojciech Matusik Bo Zhu Eftychios Sifakis MIT CSAIL MIT CSAIL MIT CSAIL MIT CSAIL Dartmouth College University of Wisconsin-Madison

Motivation

Fluidic devices are key components for a variety of products

Developing hydraulic actuators

Designing medical devices

Fabricating underwater soft robots

Motivation

However, designing fluidic devices is challenging

- The design space is large and non-trivial to parametrize
- The dynamics is computationally expensive due to the solid-fluid coupling
- Search for an optimal solution is challenging

However, designing fluidic devices is challenging

- The design space is large and non-trivial to parametrize
- The dynamics is computationally expensive due to the solid-fluid coupling
- Search for an optimal solution is challenging

However, designing fluidic devices is challenging

- The design space is large and non-trivial to parametrize
- The dynamics is computationally expensive due to the solid-fluid coupling
- Search for an optimal solution is challenging

We propose a computational design method for fluidic devices

Fluid control

ICLR 20'

Fluid simulation

SIGGRAPH 99

SIGGRAPH 17'

Fluid system optimization

Borrvall and Petersson

Differentiable physics

ICRA 19

PMLR 18

Fluid control

ICLR 20'

Fluid simulation

SIGGRAPH 99'

SIGGRAPH 17'

Fluid control

SIGGRAPH 04'

ICLR 20'

Fluid simulation

SIGGRAPH 99'

SIGGRAPH 17'

Fluid system optimization

Borrvall and Petersson

and Maute

Fluid control

SIGGRAPH 04'

ICLR 20'

Fluid simulation

SIGGRAPH 99'

SIGGRAPH 17'

Fluid system optimization

Petersson

and Maute

Differentiable physics

ICRA 19'

PMLR 18'

Differentiable Stokes flow with a **continuous** interface

Sub-cell discretization with flexible boundary conditions

Computational design of multi-functional fluidic devices

Differentiable Stokes flow with a **continuous** interface

Sub-cell discretization with **flexible** boundary conditions

Computational design of multi-functional fluidic devices

Differentiable Stokes flow with a **continuous** interface

Sub-cell discretization with **flexible** boundary conditions

Computational design of multi-functional fluidic devices

Forward simulation

Parametric Design

Forward simulation

Forward simulation

Forward simulation

Forward simulation and backpropagation

Forward simulation, backpropagation, and optimization

Parametrizing the design space (easy)

Simulating the system with a sub-cell discretization (easy)

...and computing gradients

Parametrizing the design space (easy)

Simulating the system with a sub-cell discretization (easy)

...and computing gradients

Parametrizing the design space (nontrivial!)

Simulating the system with a sub-cell discretization (nontrivial!)

...and computing gradients (nontrivial!)

Forward simulation, backpropagation, and optimization

Optimization

We represent designs as parametric shapes

We represent designs as parametric shapes

By varying these parameters, we explore different designs

Parametric designs

Signed-distance functions

Forward simulation, backpropagation, and optimization

Forward simulation, backpropagation, and optimization

Incompressible Stokes equations

$$-\eta \Delta \boldsymbol{v}(\boldsymbol{x}) + \nabla p(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x}), \qquad \boldsymbol{x} \in \boldsymbol{\Omega}$$
$$\nabla \cdot \boldsymbol{v}(\boldsymbol{x}) = 0, \qquad \boldsymbol{x} \in \boldsymbol{\Omega}$$

η: dynamic viscosity
p: pressure field
ν: velocity field
f: external force

Recap: linear elasticity

$$-\mu\Delta \boldsymbol{u}(\boldsymbol{X}) - (\mu + \lambda)\nabla[\nabla \cdot \boldsymbol{u}(\boldsymbol{X})] = \boldsymbol{f}(\boldsymbol{X})$$

μ: Lamé parameters
λ: Lamé parameters
u: displacement field
f: external force

Recap: linear elasticity

$$-\mu\Delta \boldsymbol{u}(\boldsymbol{X}) - (\mu + \lambda)\nabla[\nabla \cdot \boldsymbol{u}(\boldsymbol{X})] = \boldsymbol{f}(\boldsymbol{X})$$

Let $r(X) = -(\mu + \lambda)\nabla \cdot u(X)$ and we obtain:

$$-\mu \Delta \boldsymbol{u}(\boldsymbol{X}) + \nabla r(\boldsymbol{X}) = \boldsymbol{f}(\boldsymbol{X}), \qquad \boldsymbol{X} \in \boldsymbol{\Omega}$$
$$\nabla \cdot \boldsymbol{u}(\boldsymbol{X}) + \frac{1}{\mu + \lambda} r(\boldsymbol{X}) = 0, \qquad \boldsymbol{X} \in \boldsymbol{\Omega}$$

Analogy between Stokes flow and linear elasticity

Stokes flow

Linear elasticity

$$-\eta \Delta \boldsymbol{v}(\boldsymbol{x}) + \nabla p(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x}), \ \boldsymbol{x} \in \Omega$$
$$-\mu \Delta \boldsymbol{u}(\boldsymbol{X}) + \nabla r(\boldsymbol{X}) = \boldsymbol{f}(\boldsymbol{X}), \quad \boldsymbol{X} \in \Omega$$
$$\nabla \cdot \boldsymbol{v}(\boldsymbol{x}) = 0, \quad \boldsymbol{x} \in \Omega$$
$$\nabla \cdot \boldsymbol{u}(\boldsymbol{X}) + \frac{1}{\mu + \lambda} r(\boldsymbol{X}) = 0, \quad \boldsymbol{X} \in \Omega$$

Note the duality between η , v, p and μ , u, r.

Right \rightarrow left when $\lambda \rightarrow \infty$ (strict incompressibility).

Analogy between Stokes flow and linear elasticity

Previous work: use Stokes flow techniques to solve elasticity

Analogy between Stokes flow and linear elasticity

Previous work: use Stokes flow techniques to solve elasticity

Our model: quasi-incompressible Stokes flow

We use elasticity solvers to solve Stokes flow

- More numerically robust solvers
- Fewer variables (no pressure term)
- Easier to derive gradients

A note on boundary conditions: Dirichlet

 $v(x) = \alpha(x), \qquad x \in \partial \Omega$

α : velocity profile

A note on boundary conditions: no-slip/no-separation

$v(x) = \alpha(x),$	$x \in \partial \Omega$
$\boldsymbol{v}(\boldsymbol{x})\cdot\boldsymbol{n}(\boldsymbol{x})=0$,	$x \in \partial \Omega$
$\boldsymbol{ au}_t(\boldsymbol{x}) = 0$,	$x \in \partial \Omega$
\boldsymbol{lpha} : velocity profile	
<i>n</i> : normal	
τ_t : tangent traction	

Forward simulation, backpropagation, and optimization

Optimization

Forward simulation, backpropagation, and optimization

Consider a hybrid cell

Consider a hybrid cell

Consider a hybrid cell

4 Gaussian quadrature points in each cell

Consider a hybrid cell

4 Gaussian quadrature points in each cell

Weight of each point = area of the polygon

Soundary conditions are integrated along the interface

Forward simulation, backpropagation, and optimization

Forward simulation, backpropagation, and optimization

Recap: quasi-incompressible Stokes flow (linear elasticity)

$$-\mu\Delta \boldsymbol{u}(\boldsymbol{X}) - (\mu + \lambda)\nabla[\nabla \cdot \boldsymbol{u}(\boldsymbol{X})] = \boldsymbol{f}(\boldsymbol{X})$$

s.t. Boundary conditions.

Recap: quasi-incompressible Stokes flow (linear elasticity)

 $-\mu\Delta \boldsymbol{u}(\boldsymbol{X}) - (\mu + \lambda)\nabla[\nabla \cdot \boldsymbol{u}(\boldsymbol{X})] = \boldsymbol{f}(\boldsymbol{X})$

s.t. Boundary conditions.

After discretization from the variational form (Quadratic programming)

 $\min_{\boldsymbol{u}} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{K}(\boldsymbol{\theta}) \boldsymbol{u}$ s.t. $\boldsymbol{C}(\boldsymbol{\theta}) \boldsymbol{u} = \boldsymbol{d}(\boldsymbol{\theta})$

Recap: quasi-incompressible Stokes flow (linear elasticity)

$$-\mu\Delta \boldsymbol{u}(\boldsymbol{X}) - (\mu + \lambda)\nabla[\nabla \cdot \boldsymbol{u}(\boldsymbol{X})] = \boldsymbol{f}(\boldsymbol{X})$$

s.t. Boundary conditions.

After discretization from the variational form (Quadratic programming)

$$\min_{u} u^{\mathsf{T}} K(\theta) u$$

s.t. $C(\theta) u = d(\theta)$

Note that the stiffness matrix and the boundary conditions are determined by the design parameter $\boldsymbol{\theta}$.

Recap: Forward Simulation

Forward simulation, backpropagation, and optimization

Forward simulation, backpropagation, and optimization

Most of the computation requires the chain rule only

But there are two exceptions!

Exception 1: gradients w.r.t. the area of a polygon

A brute-force implementation plus autodiff leads to lots of if-else branches!

Most of the computation requires the chain rule only

But there are two exceptions!

Exception 1: gradients w.r.t. the area of a polygon

A brute-force implementation plus autodiff leads to lots of if-else branches!

Our solution: deriving gradients from a closed-form solution [Barrow 79']

Most of the computation requires the chain rule only

But there are two exceptions!

Exception 2: gradients through the QP problem

$$\min_{\boldsymbol{u}} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{K}(\boldsymbol{\theta}) \boldsymbol{u}$$

s.t. $\boldsymbol{C}(\boldsymbol{\theta}) \boldsymbol{u} = \boldsymbol{d}(\boldsymbol{\theta})$

Most of the computation requires the chain rule only

But there are two exceptions!

Exception 2: gradients through the QP problem

$$\min_{\boldsymbol{u}} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{K}(\boldsymbol{\theta}) \boldsymbol{u}$$

s.t. $\boldsymbol{C}(\boldsymbol{\theta}) \boldsymbol{u} = \boldsymbol{d}(\boldsymbol{\theta})$

$$\Rightarrow \begin{pmatrix} K(\theta) & C^{\top}(\theta) \\ C(\theta) & 0 \end{pmatrix} \begin{pmatrix} \widetilde{u} \\ \widetilde{\lambda} \end{pmatrix} = \begin{pmatrix} 0 \\ d(\theta) \end{pmatrix}$$

KKT conditions

Most of the computation requires the chain rule only

But there are two exceptions!

Exception 2: gradients through the QP problem (matrix reused)

$$\begin{split} \min_{u} u^{\mathsf{T}} K(\theta) u \\ s. t. \mathcal{C}(\theta) u = d(\theta) \end{split} & \longleftrightarrow \begin{pmatrix} K(\theta) & \mathcal{C}^{\mathsf{T}}(\theta) \\ \mathcal{C}(\theta) & \mathbf{0} \end{pmatrix} \begin{pmatrix} \widetilde{u} \\ \widetilde{\lambda} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ d(\theta) \end{pmatrix} \\ & \mathsf{KKT \ conditions} \end{aligned} \\ \begin{pmatrix} K(\theta) & \mathcal{C}^{\mathsf{T}}(\theta) \\ \mathcal{C}(\theta) & \mathbf{0} \end{pmatrix} \begin{pmatrix} \delta \widetilde{u} \\ \delta \widetilde{\lambda} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \delta d(\theta) \end{pmatrix} - \begin{pmatrix} \delta K(\theta) & \delta \mathcal{C}^{\mathsf{T}}(\theta) \\ \delta \mathcal{C}(\theta) & \mathbf{0} \end{pmatrix} \begin{pmatrix} \widetilde{u} \\ \widetilde{\lambda} \end{pmatrix} \\ & \mathsf{Sensitivity \ analysis} \end{split}$$

Forward simulation, backpropagation, and optimization

Optimization

Forward simulation, backpropagation, and optimization

Sample a few random designs

Pick the best one to initialize the optimization

Best initial guess

L-BFGS optimization

Pick the best one to initialize the optimization

Results: Fluidic Twister

Flexible handling of boundary conditions matters

Initial guess

Optimized design (no-separation) Optimized design (no-slip)

Results: Fluidic Twister

Flexible handling of boundary conditions matters

Initial guess

Optimized design (no-separation) Optimized design (no-slip)

Results: Fluidic Switch

Optimization with multiple configurations

Switch is off

Results: Fluidic Switch

Optimization with multiple configurations

Switch is off

Switch is on

Results: Fluidic Switch

Optimization with multiple configurations

More Results

Fluid gates

Results: Convergence Study

Simulating under refinement

Enforcing incompressibility

Ablation Study: Global Search

Comparisons between w/ and w/o sampling initial guesses

Differentiable simulation ⊃ applying the chain rule

Discretization and boundary conditions need careful treatment

Gradients speed up the process of finding optimal designs ...and they are more effective when combined with global search

Differentiable simulation ⊃ applying the chain rule

Discretization and boundary conditions need careful treatment

Gradients speed up the process of finding optimal designs

...and they are more effective when combined with global search

Thank You for Watching

Code is available

GitHub link:

https://github.com/mitgfx/diff_stokes_flow

or scan

