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Motivation

Fluidic devices are key components for a variety of products

Developing
hydraulic actuators

Designing
medical devices

Fabricating underwater 
soft robots
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Motivation

We propose a computational design method for fluidic devices
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Method: Design Parameters

By varying these parameters, we explore different designs

Parametric designs Signed-distance functions
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Method: Governing Equations

Incompressible Stokes equations

Ω

−𝜂𝜂Δ𝒗𝒗 𝒙𝒙 + 𝛻𝛻𝑝𝑝 𝒙𝒙 = 𝒇𝒇 𝒙𝒙 , 𝒙𝒙 ∈ Ω

𝛻𝛻 ⋅ 𝒗𝒗 𝒙𝒙 = 0, 𝒙𝒙 ∈ Ω

: dynamic viscosity𝜂𝜂

𝒗𝒗: velocity field
: pressure field𝑝𝑝

: external force𝒇𝒇
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Analogy between Stokes flow and linear elasticity

Stokes flow Linear elasticity

−𝜇𝜇Δ𝒖𝒖 𝑿𝑿 + 𝛻𝛻𝑟𝑟 𝑿𝑿 = 𝒇𝒇 𝑿𝑿 , 𝑿𝑿 ∈ Ω

𝛻𝛻 ⋅ 𝒖𝒖 𝑿𝑿 +
1

𝜇𝜇 + 𝜆𝜆
𝑟𝑟(𝑿𝑿) = 0, 𝑿𝑿 ∈ Ω

−𝜂𝜂Δ𝒗𝒗 𝒙𝒙 + 𝛻𝛻𝑝𝑝 𝒙𝒙 = 𝒇𝒇 𝒙𝒙 , 𝒙𝒙 ∈ Ω

𝛻𝛻 ⋅ 𝒗𝒗 𝒙𝒙 = 0, 𝒙𝒙 ∈ Ω

Note the duality between              and             .𝜂𝜂,𝒗𝒗,𝑝𝑝 𝜇𝜇,𝒖𝒖, 𝑟𝑟

Right      left when              (strict incompressibility). → 𝜆𝜆 → ∞
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Method: Governing Equations

Analogy between Stokes flow and linear elasticity
Previous work: use Stokes flow techniques to solve elasticity

Our model: quasi-incompressible Stokes flow
We use elasticity solvers to solve Stokes flow
- More numerically robust solvers
- Fewer variables (no pressure term)
- Easier to derive gradients
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Method: Governing Equations

A note on boundary conditions: no-slip/no-separation

𝒗𝒗 𝒙𝒙 = 𝜶𝜶 𝒙𝒙 , 𝒙𝒙 ∈ 𝜕𝜕Ω

: velocity profile𝜶𝜶
Ω

𝜕𝜕Ω

𝜕𝜕Ω

𝒗𝒗 𝒙𝒙 ⋅ 𝒏𝒏(𝒙𝒙) = 0, 𝒙𝒙 ∈ 𝜕𝜕Ω

𝝉𝝉𝑡𝑡 𝒙𝒙 = 𝟎𝟎, 𝒙𝒙 ∈ 𝜕𝜕Ω

: normal𝒏𝒏
: tangent traction𝝉𝝉𝑡𝑡

𝜕𝜕Ω
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Method: Discretization

Consider a hybrid cell

4 Gaussian quadrature points in each cell

Weight of each point = area of the polygon

Boundary conditions are integrated along the 
interface
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Recap: quasi-incompressible Stokes flow (linear elasticity)
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𝑠𝑠. 𝑡𝑡. Boundary conditions.

After discretization from the variational form (Quadratic programming)

min
𝒖𝒖
𝒖𝒖⊤𝑲𝑲 𝜽𝜽 𝒖𝒖

𝑠𝑠. 𝑡𝑡.𝑪𝑪 𝜽𝜽 𝒖𝒖 = 𝒅𝒅(𝜽𝜽)

Note that the stiffness matrix and the boundary conditions are determined by the 
design parameter 𝜽𝜽. 
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Method: Backpropagation

Most of the computation requires the chain rule only
But there are two exceptions!

Exception 1: gradients w.r.t. the area of a polygon

A brute-force implementation plus 
autodiff leads to lots of if-else branches!

Our solution: deriving gradients from a 
closed-form solution [Barrow 79’]
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Method: Backpropagation

Most of the computation requires the chain rule only
But there are two exceptions!

Exception 2: gradients through the QP problem (matrix reused)

Sensitivity analysis

KKT conditions

𝑲𝑲 𝜽𝜽 𝑪𝑪⊤ 𝜽𝜽
𝑪𝑪 𝜽𝜽 𝟎𝟎

�𝒖𝒖
�𝝀𝝀

= 𝟎𝟎
𝒅𝒅(𝜽𝜽)

min
𝒖𝒖
𝒖𝒖⊤𝑲𝑲 𝜽𝜽 𝒖𝒖

𝑠𝑠. 𝑡𝑡.𝑪𝑪 𝜽𝜽 𝒖𝒖 = 𝒅𝒅(𝜽𝜽)

𝑲𝑲 𝜽𝜽 𝑪𝑪⊤ 𝜽𝜽
𝑪𝑪 𝜽𝜽 𝟎𝟎

𝛿𝛿�𝒖𝒖
𝛿𝛿�𝝀𝝀

= 𝟎𝟎
𝛿𝛿𝒅𝒅(𝜽𝜽) − 𝛿𝛿𝑲𝑲 𝜽𝜽 𝛿𝛿𝑪𝑪⊤ 𝜽𝜽

𝛿𝛿𝑪𝑪 𝜽𝜽 𝟎𝟎
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Method: Optimization

Sample a few random designs

Design #1 Design #2 Design #3 Design #4
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Best initial guess L-BFGS optimization
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Initial guess Optimized design
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Results: Fluidic Switch

Optimization with multiple configurations






More Results

Fluid gates



Results: Convergence Study

Simulating under refinement

Enforcing incompressibility



Ablation Study: Global Search

Comparisons between w/ and w/o sampling initial guesses 



Summary

Differentiable simulation ⊃ applying the chain rule
Discretization and boundary conditions need careful treatment

Gradients speed up the process of finding optimal designs
…and they are more effective when combined with global search
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…and they are more effective when combined with global search



Thank You for Watching

Code is available
GitHub link:
https://github.com/mit-
gfx/diff_stokes_flow
or scan
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