A Harmonic Balance Approach for Designing Compliant Mechanical Systems with Nonlinear Periodic Motions

Pengbin Tang¹, Jonas Zehnder¹, Stelian Coros², Bernhard Thomaszewski^{1,2}

Oscillations are Everywhere

Oscillations in Engineering

Oscillations in Engineering

Collapse of Tacoma Narrows Bridge (1940)

https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)₄

Large-Amplitude Oscillations in the Wild

Large-amplitude Oscillations in the Lab

[FastRunner from ihmc]

Flappy Hummingbird [Fei et al. 2019]

Designing for Large-Amplitude Oscillations

Designing for Large-Amplitude Oscillations

Physical Prototype

Goal

Develop a computational design tool for nonlinear mechanical systems that exhibit desired large-amplitude oscillations.

Challenges

• How to model nonlinear periodic motions?

 \rightarrow Frequency-space approach based on Harmonic Balance Method (HBM)

- How do design parameters affect nonlinear periodic motion?
 → Frequency-space sensitivity analysis
- How to find design parameters that lead to desired motion?
 → Forward exploration & inverse design tools

Designing Mechanical Motion

Designing and Fabricating Mechanical Automata from Mocap Sequences [Ceylan et al. 2013]

Computational Design of Linkage-Based Characters [Thomaszewski et al. 2014]

A Computational Design Tool for Compliant Mechanisms [Megaro et al. 2017]

Spin-It: Optimizing Moment of Inertia for Spinnable Objects [Bächer et al. 2014]

Dynamics-Aware Numerical Coarsening for Fabrication Design [Chen et al. 2017]

Vibration-Minimizing Motion Retargeting for Robotic Characters [Hoshyari et al. 2019]

Modal Subspaces for Animation

Good vibrations: Modal dynamics for graphics and animation [Pentland et al. 1989]

Subspace Dynamic Simulation Using Rotation-Strain Coordinates [Pan et al. 2015]

Real-Time Subspace Integration for St.Venant-Kirchhoff Deformable Models [Barbič et al. 2005]

Subspace Clothing Simulation Using Adaptive Bases [Hahn et al. 2014]

Interactive Surface Modeling Using Modal Analysis [[Hildebrandt et al. 2011]

Latent-space Dynamics for Reduced Deformable Simulation [Fulton et al. 2019]

Audible Vibrations

Toward High-Quality Modal Contact Sound [Zheng et al. 2011]

Computational Design of Metallophone Contact Sounds [Bharaj et al. 2015]

Harmonic shells: a practical nonlinear sound model for near-rigid thin shell [Chadwick et al. 2009]

Printone: Interactive Resonance Simulation for Free-Form Print-Wind Instrument Design [Umetani et al.]

Multi-scale simulation of nonlinear thin-shell sound with wave turbulence [Cirio et al. 2018]

Acoustic Voxels: Computational Optimization of Modular Acoustic Filters [Li et al. 2016]

Nonlinear Vibrations in Engineering

The Harmonic Balance Method for Advanced Analysis and Design of Nonlinear Mechanical Systems [Detroux et al. 2014]

Forced Response Sensitivity Analysis Using an Adjoint Harmonic Balance Solver [Engels-Putzka et al. 2019] Optimization of nonlinear structural resonance using the incremental harmonic balance method [Dou and Jensen 2015]

Overview

Harmonic Balance Method

Equations of Motion in Time Domain

- Dynamic equilibrium equations in the time domain $\mathbf{M}\ddot{\mathbf{x}} + \mathbf{D}\dot{\mathbf{x}} = \mathbf{f}_{int}(\mathbf{x}) + \mathbf{f}_{ext}(\mathbf{x}, \omega, t) = \mathbf{f}(\mathbf{x}, \omega, t)$
- Periodic solution can be expressed as Fourier series $\mathbf{x}(t) = \mathbf{c}_0^x + \sum_{k=1}^{\infty} (\mathbf{s}_k^x \sin(k\omega t) + \mathbf{c}_k^x \cos(k\omega t))$
- Truncation gives $\mathbf{x}(t) \approx \mathbf{c}_0^{\chi} + \sum_{k=1}^{N_H} (\mathbf{s}_k^{\chi} \sin(k\omega t) + \mathbf{c}_k^{\chi} \cos(k\omega t))$

Equations of Motion in Frequency Space

• Rewrite as

$$\mathbf{x}(t) = (\mathbf{Q}(t) \otimes \mathbf{I}_n)\mathbf{z}$$
 and $\mathbf{f}(t) = (\mathbf{Q}(t) \otimes \mathbf{I}_n)\mathbf{b}$

Orthogonal trigonometric basis

 $\mathbf{Q}(t) = \begin{bmatrix} 1 & \sin(\omega t) & \cos(\omega t) \cdots & \sin(N_H \omega t) & \cos(N_H \omega t) \end{bmatrix}$

• Fourier coefficients

$$\mathbf{z} = \begin{bmatrix} (\mathbf{c}_0^x)^{\mathrm{T}} & (\mathbf{s}_1^x)^{\mathrm{T}} & (\mathbf{s}_1^x)^{\mathrm{T}} & \cdots & (\mathbf{s}_{N_H}^x)^{\mathrm{T}} & (\mathbf{c}_{N_H}^x)^{\mathrm{T}} \end{bmatrix} \mathbf{c}_i^x, \mathbf{s}_i^x \in \mathbf{R}^{3n}$$
$$\mathbf{b} = \begin{bmatrix} (\mathbf{c}_0^f)^{\mathrm{T}} & (\mathbf{s}_1^f)^{\mathrm{T}} & (\mathbf{s}_1^f)^{\mathrm{T}} & \cdots & (\mathbf{s}_{N_H}^f)^{\mathrm{T}} & (\mathbf{c}_{N_H}^f)^{\mathrm{T}} \end{bmatrix} \mathbf{c}_i^f, \mathbf{s}_i^f \in \mathbf{R}^{3n}$$

Equations of Motion in Frequency Space

Galerkin projection

- Insert truncated series into time-domain equations of motion
- Integrate over period
- Project onto $\mathbf{Q}(t) \rightarrow \mathsf{time-dependence}$ disappears

Time-Domain vs. Frequency-Domain Simulation

Nonlinear Time Domain

(Newmark)

Wall-clock simulation time

Frequency Response Curves

Computational Design

Design Objectives – Trajectory

Design Objectives – Amplitude

• How do we quantify motion magnitude? $A_i(\mathbf{z}) = \int_0^T \|\mathbf{v}_i(t)\| dt$

$$\mathbf{x} = \Gamma_x \mathbf{z} \quad \rightarrow \quad A_i(\mathbf{z}) = \sum_j \left| \mathbf{x}_i^{j+1} - \mathbf{x}_i^j \right|$$

• Amplitude objective $f_{Ampl}(\mathbf{z}) = (A_i(\mathbf{z}) - \overline{A_i})^2$

Design Sensitivity

- Optimal design: minimize objective function $f(\mathbf{z}(\mathbf{p}), \mathbf{p})$ wrt. \mathbf{p}
- Requires gradient

$$\frac{df}{d\mathbf{p}} = \frac{d\mathbf{z}^T}{d\mathbf{p}} \frac{\partial f}{\partial \mathbf{z}} + \frac{\partial f}{\partial \mathbf{p}}$$

Dynamic Equilibrium

$$\mathbf{h}(\mathbf{z},\mathbf{p},\omega) = \mathbf{A}(\mathbf{p},\omega)\mathbf{z} - \mathbf{b}(\mathbf{p},\mathbf{z},\omega) = 0$$

$$\frac{d\mathbf{h}}{d\mathbf{p}} = 0 \qquad \rightarrow \frac{\partial \mathbf{h}}{\partial \mathbf{z}} \frac{d\mathbf{z}}{d\mathbf{p}} + \frac{\partial \mathbf{h}}{\partial \mathbf{p}} = \mathbf{0} \qquad \rightarrow \begin{bmatrix} \text{sensitivity matrix} \\ \mathbf{S} = \frac{d\mathbf{z}}{d\mathbf{p}} = -\frac{\partial \mathbf{h}^{-1}}{\partial \mathbf{z}} \frac{\partial \mathbf{h}}{\partial \mathbf{p}} \end{bmatrix}$$

Examples

Forward Sensitivity Exploration

• First-order prediction for new equilibrium state

$$\mathbf{z}_p = \mathbf{z} + \frac{d\mathbf{z}}{d\mathbf{p}} \Delta \mathbf{p}$$

Compute sensitivity ma	trix
Update forward desig	jn .
Animate forward design	
Use amplitude gradi	ent based offset
8. 0088	mass0-weight
8. 0000	mass1-weight
8. 0000	mass2-weight
8. 0000	mass3-weight
8. 0000	mass4-weight
8. 0000	mass5-weight
8. 8888	mass6-weight
8.0000	mass7-weight
0. <mark>00</mark> 00	mass8-weight
8. 8888	mass9-weight
8.0000	mass10-weight
0.0000	Driving amplitud
0.0000	Driving phase 8-
0. 0000	Driving amplitud
8.0000	Driving phase 1-

Inverse Design – Trajectory

Inverse Design – Amplitude

Inverse Design – Amplitude

Conclusions

HBM + Sensitivity Analysis = Efficient and powerful approach for designing nonlinear mechanical systems with largeamplitude motion

Limitations & Future Work

- More accurate damping
- Contact and friction
- Subspace HBM

Thank you!