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Oscillations are Everywhere




Oscillations in Engineering




Oscillations in Engineering

Collapse of Tacoma Narrows Bridge (1940) https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940),



Large-Amplitude Oscillations in the Wild




Large-amplitude Oscillations in the Lab

[FastRunner from ihmc] Flappy Hummingbird
[Fei et al. 2019]



Designing for Large-Amplitude Oscillations

Design 1 Design 2 Design3
(0g, Og, Og) (40g, 40g, 40g) (0Og, 0g, 120g)
i 4 Lol
"/ x / A\\ / \\
- = * — &

i ] |
| }—7—77 \ v _} — I“.‘ I S

1 ‘I 1 |
Vo Lo
AN \ o
\
\ \
\ \
\
\\ \\

};; f?_."'\



Designing for Large-Amplitude Oscillations

Optimized Design

, , Physical Prototype
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Goal

Develop a computational design tool for
nonlinear mechanical systems that exhibit
desired large-amplitude oscillations.



Challenges

* How to model nonlinear periodic motions?

— Frequency-space approach based on Harmonic Balance
Method (HBM)

* How do design parameters affect nonlinear periodic motion?
— Frequency-space sensitivity analysis

* How to find design parameters that lead to desired motion?
— Forward exploration & inverse design tools



Designing Mechanical Motion

Designing and Fabricating Mechanical Computational Design of Linkage- A Computational Design Tool
Automata from Mocap Sequences Based Characters for Compliant Mechanisms
[Ceylan et al. 2013] [Thomaszewski et al. 2014] [Megaro et al. 2017]
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Spin-It: Optimizing Moment of Dynamics-Aware Numerical Vibration-Minimizing Motion Retargeting
Inertia for Spinnable Objects Coarsening for Fabrication Design for Robotic Characters

[Bacher et al. 2014] [Chen et al. 2017] [Hoshyari et al. 2019]



Modal Subspaces for Animation

Good vibrations: Modal

dynamics for graphics and Real-Time Subspace Integration for Interactive Surface Modeling
animation St.Venant-Kirchhoff Deformable Models Using Modal Analysis

[Pentland et al. 1989] [Barbi€ et al. 2005] [[Hildebrandt et al. 2011]
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Subspace Dynamic Simulation Subspace Clothing Simulation Latent-space Dynamics for Reduced
Using Rotation-Strain Coordinates Using Adaptive Bases Deformable Simulation

[Pan et al. 2015] [Hahn et al. 2014] [Fulton et al. 2019]



Audible Vibrations

Toward High-Quality Modal Harmonic shells: a practical nonlinear Multi-scale simulation of nonlinear
Contact Sound sound model for near-rigid thin shell thin-shell sound with wave turbulence
[Zheng et al. 2011] [Chadwick et al. 2009] [Cirio et al. 2018]
Computational Design of Printone: Interactive Resonance Acoustic Voxels: Computational
Metallophone Contact Sounds Simulation for Free-Form Print-Wind Optimization of Modular Acoustic Filters
[Bharaj et al. 2015] Instrument Design [Li et al. 2016]

[Umetani et al.]



Nonlinear Vibrations in Engineering
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The Harmonic Balance Method for Forced Response Sensitivity Optimization of nonlinear structural
Advanced Analysis and Design of Analysis Using an Adjoint resonance using the incremental harmonic
Harmonic Balance Solver balance method

Nonlinear Mechanical Systems
[Detroux et al. 2014] [Engels-Putzka et al. 2019] [Dou and Jensen 2015]



Overview
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Harmonic Balance Method



Equations of Motion in Time Domain

* Dynamic equilibrium equations in the time domain
MX + Dx = £, (X) + fo (X, 0, 1) = f(X, w, t)

* Periodic solution can be expressed as Fourier series

x(t) =c¢j + Z(s,’{‘ sin(kwt) + cj cos(kwt))
k=1

. : :
Truncation gives N

x(t) = ¢§ + ) (sy sin(kwt) + cjcos(kwt))
k=1



Equations of Motion in Frequency Space

* Rewrite as
x(t) = (Q(O)®I,)z and f(t) = (Q()®I,)b

e Orthogonal trigonometric basis

Q(t) =[1 sin(wt) cos(wt) -+ sin(Nywt) cos(Nywt)]

* Fourier coefficients
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Equations of Motion in Frequency Space

Galerkin projection
* Insert truncated series into time-domain equations of motion
* Integrate over period

* Project onto Q(t) — time-dependence disappears

Equations of motion in frequency space:

= h(z,w) =A(w)z—b(z,w) =0

Inertia and damping
forces

Nonlinear forces



Time-Domain vs. Frequency-Domain
Simulation

Nonlinear Time Domain

(Newmark)

Wall-clock simulation time



Frequency Response Curves
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Computational Design



Design Objectives - Trajectory
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Design Objectives - Amplitude

* How do we quantify motion magnitude?
T
Ai(@) = [, Ilvi()ll dt

+1
x=NLz - A@=Xx/"" —x]/|

* Amplitude objective )
famp1(2) = (A;(z) — Ap)?



Design Sensitivity

* Optimal design: minimize objective function f(z(p),p) wrt. p
* Requires gradient

af dzTaf+ of
dp dp 0z 0p

* Dynamic Equilibrium
h(z,p,w) = A(p,w)z—b(p,z,w) =0

Sensitivity matrix |
dz dh ~dh

dh ohdz oh .
dp 0z Op

0 =
dp _)azdp-l_ap 0




Examples



orward Sensitivity Exploration

¥ Forward Exploration

* First-order prediction for et st '

Update forward design
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Inverse Design - Trajectory

Before Optimization After Optimization




Inverse Design - Amplitude

Before Optimization
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Inverse Design - Amplitude

Before optimization After optimization
Before optimization After optimization il
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Conclusions

HBM + Sensitivity Analysis = Efficient and powerful approach
for designing nonlinear mechanical systems with large-
amplitude motion

Limitations & Future Work
* More accurate damping
* Contact and friction

* Subspace HBM



Thank you!



