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Applications

Garment Design
(CLO, Marvelous Designer)



Applications

Video Games



Applications

Movies



Challenges

• Efficiency
High fidelity cloth simulation systems use cloth meshes with 
very high number of vertices.



Challenges

• Robustness
Self-collisions and inter-object collisions could be extremely 
complex.



Challenges

• Multi-GPU

• How to assign data and computations to multiple GPUs？

• How to reduce data transfers between multiple GPUs？



Main Results

• Parallel Multi-GPU cloth simulation

• Scalable parallel algorithms for matrix assembly, sparse 

linear system solving,  and collision handling

• Applicable to cloth meshes with several million triangles on 

4/8-GPU systems

• Almost interactive performance on 4 NVIDIA Titan Xp GPUs: 

2-5fps

• Up to 8.23X speedups on 8 NVIDIA Titan V GPUs



Background

• Overview of Cloth Simulation

Time Integration

Proximity 
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Move to next step



Background

• Time Integration 

Considering the formulas:



Background

• Collision Detection and Response

• Collision Detection
Broad Phase:
High-level culling using spatial acceleration data 
structure

Narrow Phase:
Intersection Test

• Collision Response
Nonlinear Optimization



Contributions

• Pipelined SpMV

• Dynamic Matrix Assembly

• Parallel Collision Handling



Pipelined SpMV

• Recalling CG Solver

• Vector operations can be easily 
implemented on multiple GPUs.

• What about matrix-vector 
multiplication?

[Baraff and Witkin 1998]



Pipelined SpMV

• All-to-all data transfers are expensive
• Significantly reduce GPU loads



Pipelined SpMV

• Novel Sparse Matrix-vector (SpMV) 
Multiplication
• Pipeline-based multiplication
• Inter-leave computation and data transfer



Pipelined SpMV

• Novel Work Queue Generation Algorithm 
for Fat-tree Interconnect Topology
• Optimize data transfer between multiple GPUs
• High throughput on complex meshes



Matrix Assembly

• Compute new contact forces 
and internal forces at each 
frame

• Assembly Elements Distribution

• Sparse Matrix Filling

• Use with a preconditioned 
conjugate gradient (PCG) solver 
on multiple GPUs

Performance Comparison 
with CAMA[Tang et al. 2016]



Collision Handling

• Spatial Hashing
• Take hash table into parts and assign them to 

multiple GPUs



Collision Handling

• Parallel algorithms for discrete and 
continuous collision detection 

• Use spatial hashing over multiple GPUs 
for collision culling

• Scale linearly with number of GPUs
• Reduce memory overhead of each GPU
• First interactive approach for self-

collision detection on meshes with 1+M 
triangles

Parallel Penetration Handling on 
Multi-GPUs



Results

• P-Cloth: Faster GPU-based simulator for 
complex meshes

• CUDA 10.0/Ubuntu 16.04
• Handles complex models with 1+ M 

triangles
• 2-5 fps on 4 NVIDIA Titan Xp GPUs
• Up to 5.1X on 4 NVIDIA Titan Xp GPUs
• Up to 8.23X on 8 NVIDIA Titan V GPUs

Runtime Ratios for Stages



Benchmark: Miku

• 1.33M  triangles
• Time step: 1/1000s
• Multiple layers and 

self-collisions
• Average FPS: 2.59
• 5.4X on 4 GPUs



Benchmark: Miku

• Real-time 
Playback



Benchmark: Zoey

• 569K  triangles
• Time step: 1/500s
• Multiple layers 

and self-collisions
• Average FPS: 2.04
• 5.37X on 4 GPUs



Benchmark: Zoey

• Real-time 
Playback



Benchmark: Kimono

• 1M  triangles
• Time step: 1/1000s
• Multiple layers and 

self-collisions
• Average FPS: 1.11
• 4.73X on 4 GPUs



Benchmark: Flag

• 1.2M  triangles

• Time step: 1/250s

• Multiple layers and self-
collisions

• Average FPS: 5.45

• 4.66X speedup on 4 GPUs

• 8.23X speedup on 8 GPUs



Comparison on Resolutions

• More wrinkles and 
folds with higher 
triangle resolution

• 2.48fps on 4 GPUs 
with 1.65M 
triangles

1.65M triangles3.1K triangles



Comparison on Resolutions

• More wrinkles and 
folds with higher 
triangle resolution

• 5.12fps on 4 GPUs 
with 510K triangles

510K triangles10.1K triangles



Comparison with I-Cloth

• Similar simulation 
accuracy
• 5.66X faster on 4 GPUs

I-ClothP-Cloth



Interactive Stitching

• Interactive 
rate (10+ fps)

• 316K 
triangles



Limitations

• Collision detection remains a bottleneck.
• Pipelined SpMV is a general solution for all distributed 

systems, but work queue and data transfer algorithms 
are limited to fat-tree topologies. 
• Speedup can vary depending on the cloth configuration 

and data synchronization overhead. 
• Robustness is governed by contact force computation 

and a non-linear impact zone solver for penetration 
handling. 
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