
P-Cloth: Interactive Cloth Simulation on
Multi-GPU Systems using Dynamic Matrix
Assembly and Pipelined Implicit Integrators

Cheng Li1, Min Tang1, Ruofeng Tong1, Ming Cai1,
Jieyi Zhao3, and Dinesh Manocha2

1Zhejiang University, China
2University of Maryland at College Park, USA
3University of Texas Health Science Center at Houston, USA

https://min-tang.github.io/home/PCloth/

https://min-tang.github.io/home/PCloth/

Applications

Garment Design
(CLO, Marvelous Designer)

Applications

Video Games

Applications

Movies

Challenges

• Efficiency
High fidelity cloth simulation systems use cloth meshes with
very high number of vertices.

Challenges

• Robustness
Self-collisions and inter-object collisions could be extremely
complex.

Challenges

• Multi-GPU

• How to assign data and computations to multiple GPUs？

• How to reduce data transfers between multiple GPUs？

Main Results

• Parallel Multi-GPU cloth simulation

• Scalable parallel algorithms for matrix assembly, sparse

linear system solving, and collision handling

• Applicable to cloth meshes with several million triangles on

4/8-GPU systems

• Almost interactive performance on 4 NVIDIA Titan Xp GPUs:

2-5fps

• Up to 8.23X speedups on 8 NVIDIA Titan V GPUs

Background

• Overview of Cloth Simulation

Time Integration

Proximity
Checking

(DCD)

Linear System
Assembly

Linear System
Solving

Collision
Detection

(CCD)

Impact Zone
Solver

Move to next step

Background

• Time Integration

Considering the formulas:

Background

• Collision Detection and Response

• Collision Detection
Broad Phase:
High-level culling using spatial acceleration data
structure

Narrow Phase:
Intersection Test

• Collision Response
Nonlinear Optimization

Contributions

• Pipelined SpMV

• Dynamic Matrix Assembly

• Parallel Collision Handling

Pipelined SpMV

• Recalling CG Solver

• Vector operations can be easily
implemented on multiple GPUs.

• What about matrix-vector
multiplication?

[Baraff and Witkin 1998]

Pipelined SpMV

• All-to-all data transfers are expensive
• Significantly reduce GPU loads

Pipelined SpMV

• Novel Sparse Matrix-vector (SpMV)
Multiplication
• Pipeline-based multiplication
• Inter-leave computation and data transfer

Pipelined SpMV

• Novel Work Queue Generation Algorithm
for Fat-tree Interconnect Topology
• Optimize data transfer between multiple GPUs
• High throughput on complex meshes

Matrix Assembly

• Compute new contact forces
and internal forces at each
frame

• Assembly Elements Distribution

• Sparse Matrix Filling

• Use with a preconditioned
conjugate gradient (PCG) solver
on multiple GPUs

Performance Comparison
with CAMA[Tang et al. 2016]

Collision Handling

• Spatial Hashing
• Take hash table into parts and assign them to

multiple GPUs

Collision Handling

• Parallel algorithms for discrete and
continuous collision detection

• Use spatial hashing over multiple GPUs
for collision culling

• Scale linearly with number of GPUs
• Reduce memory overhead of each GPU
• First interactive approach for self-

collision detection on meshes with 1+M
triangles

Parallel Penetration Handling on
Multi-GPUs

Results

• P-Cloth: Faster GPU-based simulator for
complex meshes

• CUDA 10.0/Ubuntu 16.04
• Handles complex models with 1+ M

triangles
• 2-5 fps on 4 NVIDIA Titan Xp GPUs
• Up to 5.1X on 4 NVIDIA Titan Xp GPUs
• Up to 8.23X on 8 NVIDIA Titan V GPUs

Runtime Ratios for Stages

Benchmark: Miku

• 1.33M triangles
• Time step: 1/1000s
• Multiple layers and

self-collisions
• Average FPS: 2.59
• 5.4X on 4 GPUs

Benchmark: Miku

• Real-time
Playback

Benchmark: Zoey

• 569K triangles
• Time step: 1/500s
• Multiple layers

and self-collisions
• Average FPS: 2.04
• 5.37X on 4 GPUs

Benchmark: Zoey

• Real-time
Playback

Benchmark: Kimono

• 1M triangles
• Time step: 1/1000s
• Multiple layers and

self-collisions
• Average FPS: 1.11
• 4.73X on 4 GPUs

Benchmark: Flag

• 1.2M triangles

• Time step: 1/250s

• Multiple layers and self-
collisions

• Average FPS: 5.45

• 4.66X speedup on 4 GPUs

• 8.23X speedup on 8 GPUs

Comparison on Resolutions

• More wrinkles and
folds with higher
triangle resolution

• 2.48fps on 4 GPUs
with 1.65M
triangles

1.65M triangles3.1K triangles

Comparison on Resolutions

• More wrinkles and
folds with higher
triangle resolution

• 5.12fps on 4 GPUs
with 510K triangles

510K triangles10.1K triangles

Comparison with I-Cloth

• Similar simulation
accuracy
• 5.66X faster on 4 GPUs

I-ClothP-Cloth

Interactive Stitching

• Interactive
rate (10+ fps)

• 316K
triangles

Limitations

• Collision detection remains a bottleneck.
• Pipelined SpMV is a general solution for all distributed

systems, but work queue and data transfer algorithms
are limited to fat-tree topologies.
• Speedup can vary depending on the cloth configuration

and data synchronization overhead.
• Robustness is governed by contact force computation

and a non-linear impact zone solver for penetration
handling.

Acknowledgements

üNational Key R&D Program of China (2017YFB1002703)

üNSF China (61972341, 61832016, 51775496, 61732015)

üZhiyu Zhang and Xiaorui Chen for helping on the
benchmarks

üMomo Inc. for the Benchmark Kimono
üZhijiang Lab for the 8-GPU workstation

üAnonymous referees for their valuable comments and
helpful suggestions

Thanks!

Q&A

