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Background: Data-Driven Simulators

*Learning and predicting an unknown physical system

Observed data

Learn the model Predict the dynamics

o ..‘:l:...,--'i \
e
'S Yo ?Force ?
An ML Model: 0000000000050 00000090
Input: ~ state_i State_0 Future States

Output: state_i+1
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Background: Data-Driven Simulators

*How to describe a dynamic physical system?

System - 1 System - 2

<>® fg"


https://docs.google.com/file/d/16hMiIYFg3t6zQ14CrWZM210qvSNgBlUx/preview
https://docs.google.com/file/d/1Her29_Ztm1ZLrIR9Dm8BvjFRSH8qBkff/preview

[Learning physical constraints with neural projections] DARTMOUTH

b

Simulation and Learning

* Unified physics simulators in CG can inspire the design of learning algorithms to
perceive physical systems

Physics simulation: Physics learning:
Systems with mathematical models Systems with observation data
Predicting dynamics with unified models Predicting dynamics without known models

Use the priors from
physical simulations
to guide the design of
network architectures

Figures from Maclin et al. Unified Particle Physics for Real-Time Applications. ACM TOG 33.
Battaglia et al. Interaction networks for learning about objects, relations and physics. NeurlPS 2016.
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Simulation and Learning

*Mass-spring models
- Compute the forces among each particles in the system;

- Explicit time integration or implicit time integration.
* Interaction networks* Force: gravity, spring, friction, ...

e

* Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for learning about objects, relations and physics. In Advances in neural
information processing systems, pages3194502-4510, 2016.
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Simulation and Learning

«Smoothed particle hydrodynamics
- A Lagrangian viewpoint to simulate fluids

- Physical property approximated by weighted sum of the kernel

 Lagrangian fluid simulation*

* Ummenhofer, Benjamin, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. "Lagrangian fluid simulation with continuous convolutions." In International Conference on Learning
Representations. 2019.
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Simulation and Learning

*PIC/FLIP

- Eulerian-Lagrangian representation B features

flow

- Particle to grid; grid to particle @ particle

-\ + I
H * 7 g —91
* AdvectiveNet -
 Lagrangian advection

Eulerian velocity

* Xingzhe He, Helen L. Cao, Bo Zhu. AdvectiveNet: An Eulerian-Lagrangian Fluidic Reservoir for Point Cloud Processing. International Conference on Learning
Representations (ICLR), 2020.
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Simulation and Learning

*Hamiltonian systems

- Describe the system’s state using the position and momentum of the objects, whose
evolution equation is given by the Hamilton's equations

 Hamiltonian networks™ Energy: kinematics, potential,

* Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In Advances in Neural Information Processing Systems, pages 15353-15363, 2019.
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Simulation and Learning

*Position-based dynamics
- Model the system using the constraints(C(+)) that the position(x) should satisfy

- Use a projection algorithm to correct the predicted positions such that they satisfy all the
constraints: C(x) =0

 Constraints (Ours)
Constraints: length, angle, position,
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Examples of Constraints

Length constraint

/

*Distance (length) «C(x)=0

« Distance(i, j) - constant = 0
rigidity constraint
*Angle (bending)

* Angle(i, j, k) - constant = 0

*Shape (rigidity)

Collision constraint
\
\
\

e ©

® o

10

» Shape - Initial _Shape =0

*Non-penetration (collision)

—V

Bending constraint

 Distance(i, other_objects) >=0
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Position-based Dynamics: Variational Perspective
. | o X =
* 1 X) = X—X)"M(x—-—X)+ )\ C(x
lnxny( ) Af._,( ) ( ) (X) /JZO\
X
«Prediction with forces -@®

*Correction with constraints

*The correction step amounts to an energy
minimization problem
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Position-based Dynamics: Algorithm Overview

Algorithm 1 Position-based dynamics

I: for all vertices i do

2 initialize x; = x(,). V= V?Q wi = 1/mj

3: end for

4: loop

5: for all vertices i do v; < v; + Arwifext(X;)

6: for all vertices i do p; < x; + Arv;

7 for all vertices i do genCollConstraints(x; — p;)

8: loop solverlteration times

9: projectConstraints(Cy,.. ., CMEME P pPN)
10: end loop
- o ff' :_”(‘l';“_“ "\l‘:‘/’ " Enforcing hard-coded constraints
13: Xi < Pi
14: end for
15: velocityUpdate(vy..... Vy)
16: end loop A Survey on Position Based Dynamics, 2017. Jan Bender, Matthias Miiller and Miles Macklin.

12
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Using Constraints to describe the physical systems

*Model the physical systems using its constraints: C(x) =0

- Distance(i, j) - constant = 0 - Shape ) InitiaI_Shapé =0
- Angle(i, j, k) - constant = 0 - Distance(i, other_objects) >= 0

* Directly related to human’s perception
* A unified representation of physics
* Directly manipulate on the positions

* Inherently implicit scheme for stable prediction

13
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Our Approach: Learning Constraints by Neural Projection

Algorithm 1 Position-based dynamics

1: for all vertices i do

2; initialize x; = x(,). Vi= V?Q wi = 1/mj

3: end for

4: loop

5: for all vertices i do v; < v; + Arwifexi(Xi)

6: for all vertices i do p; < x; + Arv; -

i for all vertices i do genCollConstraints(x; — p;) o\
8: | loop solverlteration times ’ ~AOD/

9: projectConstraints(Cy.,. . ., MM DL pPN) N N

10 end loop

11: for all vertices i do Unknown constraints:

12: Vi < (pi—X;)/Ar

13: X < P Replace this module with an NN

14: end for

15: velocityUpdate(vy., ..., VN)

16: end loop A Survey on Position Based Dynamics, 2017. Jan Bender, Matthias Miiller and Miles Macklin.

14
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Our Approach: Learning Constraints by Neural Projection

*Using a lightweight neural network to
represent the constraints C(-)

1
2
*[teratively solve the projection that moves z

the input positions(x) to a state where 5

C(x)=0 holds.
v _
L2y
input prediction

i Qn -
oy § %D—» 8= = -—»tA.r .uV("—»
j:; +1 . e .
A Iterative Neural Projection

Algorithm 1: Projection Unit

x! =%

fori=1— Ndo

6 end

A= Cuci(ii)”vcnet (ii)|2_;
5% = —A\VC,ha(x') ; Gradients calculated
xtl =%t +6%; by auto differentiation

Output: Projected positions x

Input: Constraint C,,(-), positions X.

15
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Our Approach: Learning Constraints by Neural Projection

*Prediction:

» Advance the position of each particle with given external forces
«Correction:

» A black-box NN module to enforce constraints

» Multiple loops of projection iterations

» Update the particle positions to the places where the black-box constraints are satisfied
* Velocity update:

» Based on the positions in time n and n+1

! B — Loss is computed
|, i Ay ( | —— | using the difference

/e o |7 QP Tiver (T ~ 4 between the predicted
N { P 4 | o < » and the groundtruth

ok s d\i;i(;n t N ar ey I o S (groundtruth data generated

using physical simulation)
16
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Our Approach: Multi-Group Representation

DARTMOUTH
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Algorithm 2: Multi-Group Projection

lnput NN\(,,,“( ) "-(Iul\](')°

. | Group of positions Xy, -+, Xys.
. -
G1) (G2 (G3) (G4) ; :f =X T
2fori=1— Ndo
* Sub- NetWQ_rkS ........ 3 | forj=1— Mdo

3 4 x"+l Project(Chet, , X}) ;
- "@‘—T: s | end

° " - g Kl ’ 6 Synchronizing x'*! among groups:
' —[NN2) H o 7 end

- -T Output: Projected positions x
? .................. ]
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Animations of the predicted results

A rigid body rotating with the
external forces that sum to O.
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DARTMOUTH
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https://docs.google.com/file/d/189-3vi0A2pZOfxW7SZwTEx48axg98wKj/preview
https://docs.google.com/file/d/1lZlACHkBveZjN4eXLTegcf5MGxdlGeai/preview
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Animations of the predicted results

A rope with stretching and
bending. I
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https://docs.google.com/file/d/1WOdSmh6sWL5BQ9xqFOHfJciuz--TeHmG/preview
https://docs.google.com/file/d/1I2RM5EpqToXS4uabwfBY8UX0cKogN-CL/preview
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Animations of the predicted results

DARTMOUTH

*The articulated body
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https://docs.google.com/file/d/16hMiIYFg3t6zQ14CrWZM210qvSNgBlUx/preview
https://docs.google.com/file/d/1DCaSvK3rvOAnzJA5-QPmhJqKxPJUupmM/preview
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Animations of the predicted results

*Rigid body collisions

Initial (1) @Q
@ @ @ . Qe

21


https://docs.google.com/file/d/1Her29_Ztm1ZLrIR9Dm8BvjFRSH8qBkff/preview
https://docs.google.com/file/d/1ezhZLN1fWAjaeVE0jhe4gqxEpLD9C3mZ/preview
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Discussions

*The learned constraints:
« The value has a physical meanings; Future work to better separate each constraint.

— c_net(x) = 0.0009722039 — frame 1 o006 3 —— frame 1 * 4
6 c_net(x) = 0.48020524 ds0 \ frame 2 .“ frame 2
—= c_net(x) = 2.8145232 3 ~:= frame 3 1 —:= frame 3 5 °
c_net(x) » 1.3494593 9 frame 4 + frame 4 % 1
LS — c_net(x) = 1.2096685 | frames | o006 ‘.i frame 5 X K
-=- c_net(x) = 2.3043756 015 === frame 6 '-" === frame 6 O. ..
=20 e c_net(x) = 5.059935 frame 7 1 frame 7 LPPPRL
wol-1 5 g 7t c_net(x) = 7.4682937 frame 8 A frame 8
/ 7 o \
/ / K : wio frame 9 0.0004 \ frame 9 (d 1 )
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A1 \i \
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L]
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*The iterative projection:

- A projection process is also used in other applications.
- Fixed point problems.

*Network architectures for more types of systems.

22
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Take-home message

Intersection between physics simulation and physics learning

*Use the priors from physical simulations to guide the design of network

architectures

*Specific network architectures target at embedding specific types of priors

- Two additional examples

23
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More physics learning

«Soft Multicopter Control using Neural Dynamics Identification

*Yitong Deng, Yaorui Zhang, Xingzhe He, Shugi Yang, Yunjin Tong, Michael Zhang, Daniel M. DiPietro, Bo Zhu. Soft Multicopter Control using
Neural Dynamics Identification. Conference on Robot Learning (CoRL 2020)
https://corlconf.github.io/corl2020/paper_396/

24


https://docs.google.com/file/d/13f37lHTI-59kGH5RjY6pGdoLddjiNnPe/preview
https://docs.google.com/file/d/1Hu-KQ0QdBfQyN-PmOsx0o7tkOhtDgYqO/preview
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More physics learning

*Nonseparable Symplectic Neural Networks

3 -
.é&ﬂ X

* Shiying Xiong, Yunjin Tong, Xingzhe He, Cheng Yang, Shugi Yang, Bo Zhu. Nonseparable Symplectic Neural Networks. International Conference

on Learning Representations (ICLR 2021)
https://shiyingxiong.github.io/proj/NSSNN/NSSNN
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https://docs.google.com/file/d/1Owbw7QU4xYCJ-pnoTCuFu4jUrE8HBJWC/preview
https://docs.google.com/file/d/1VKzHLRhfkkj8fYsxmn1T12qDigIhWfGO/preview
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More work in our lab:
bridging physics simulation and machine learning

-Slmulatlon turbulent flows, vortex dynamics, bubbles, surface-tension-dom

E : i""'. - ":,.’.'" U ": ‘ \kﬁ
¢ f—t ,,‘-,«r/ ¥ gﬁ \../,‘; ’ X

*Learning: solid systems, fluid systems, soft-bodied multicopter control, point cloud processing

Paper references: https://www.cs.dartmouth.edu/~bozhu/
26
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Thank you!

For more information:

- https:/lwww.cs.dartmouth.edu/~bozhu/
- https:/ly-sq.github.io/
- https://Iwww.youtube.com/playlist?list=PLPkEv32KJxkrZZDviP3XGI9mMJNBHBLBmIm
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