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•Learning and predicting an unknown physical system

Background: Data-Driven Simulators
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Observed data       Learn the model Predict the dynamics

An ML Model:

Input:    state_i
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Force



•How to describe a dynamic physical system?

Background: Data-Driven Simulators

[Learning physical constraints with neural projections]

3
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https://docs.google.com/file/d/16hMiIYFg3t6zQ14CrWZM210qvSNgBlUx/preview
https://docs.google.com/file/d/1Her29_Ztm1ZLrIR9Dm8BvjFRSH8qBkff/preview


• Unified physics simulators in CG can inspire the design of learning algorithms to 
perceive physical systems 

Simulation and Learning
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Figures from Maclin et al. Unified Particle Physics for Real-Time Applications. ACM TOG 33.
                             Battaglia et al. Interaction networks for learning about objects, relations and physics. NeurIPS 2016. 

                     

Physics simulation: 
Systems with mathematical models
Predicting dynamics with unified models

Physics learning: 
Systems with observation data
Predicting dynamics without known models

Use the priors from 
physical simulations 
to guide the design of 
network architectures



•Mass-spring models
• Compute the forces among each particles in the system;

• Explicit time integration or implicit time integration.

• Interaction networks*

Simulation and Learning
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Force: gravity, spring, friction, …

* Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for learning about objects, relations and physics. In Advances in neural 
information processing systems, pages3194502–4510, 2016.



Simulation and Learning

•Smoothed particle hydrodynamics
• A Lagrangian viewpoint to simulate fluids

• Physical property approximated by weighted sum of the kernel

• Lagrangian fluid simulation*
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* Ummenhofer, Benjamin, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. "Lagrangian fluid simulation with continuous convolutions." In International Conference on Learning 
Representations. 2019.



•PIC/FLIP 
• Eulerian-Lagrangian representation

• Particle to grid; grid to particle

• AdvectiveNet*

Simulation and Learning
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* Xingzhe He, Helen L. Cao, Bo Zhu. AdvectiveNet: An Eulerian-Lagrangian Fluidic Reservoir for Point Cloud Processing. International Conference on Learning 
Representations (ICLR), 2020.



•Hamiltonian systems
• Describe the system’s state using the position and momentum of the objects, whose 

evolution equation is given by the Hamilton's equations

• Hamiltonian networks*

Simulation and Learning
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* Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In Advances in Neural Information Processing Systems, pages 15353–15363, 2019.

Energy: kinematics, potential, 
…



•Position-based dynamics
• Model the system using the constraints(C(·)) that the position(x) should satisfy

• Use a projection algorithm to correct the predicted positions such that they satisfy all the 
constraints: C(x) = 0

• Constraints (Ours)

Simulation and Learning
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Constraints: length, angle, position, 
…



•Distance (length)

• Distance(i, j) - constant = 0

•Angle (bending)

• Angle(i, j, k) - constant = 0

•Shape (rigidity)

• Shape - Initial_Shape = 0

•Non-penetration (collision)

• Distance(i, other_objects) >= 0 

Examples of Constraints
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• C(x) = 0



•

•Prediction with forces

•Correction with constraints

•The correction step amounts to an energy 
minimization problem

Position-based Dynamics: Variational Perspective
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Position-based Dynamics: Algorithm Overview

Enforcing hard-coded constraints
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A Survey on Position Based Dynamics, 2017. Jan Bender, Matthias Müller and Miles Macklin.



Using Constraints to describe the physical systems

•Model the physical systems using its constraints: C(x) = 0 

- Distance(i, j) - constant = 0 - Shape - Initial_Shape = 0
- Angle(i, j, k) - constant = 0 - Distance(i, other_objects) >= 0 

• Directly related to human’s perception

• A unified representation of physics

• Directly manipulate on the positions

• Inherently implicit scheme for stable prediction
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Our Approach: Learning Constraints by Neural Projection

Unknown constraints:
Replace this module with an NN
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A Survey on Position Based Dynamics, 2017. Jan Bender, Matthias Müller and Miles Macklin.



•Using a lightweight neural network to 
represent the constraints C(·)

•Iteratively solve the projection that moves 
the input positions(x ) to a state where 
C(x)=0 holds.

Our Approach: Learning Constraints by Neural Projection
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Gradients calculated 
by auto differentiation



•Prediction: 
• Advance the position of each particle with given external forces

•Correction: 
• A black-box NN module to enforce constraints
• Multiple loops of projection iterations
• Update the particle positions to the places where the black-box constraints are satisfied 

• Velocity update:
• Based on the positions in time n and n+1

Our Approach: Learning Constraints by Neural Projection
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Loss is computed 
using the difference 
between the predicted 
and the groundtruth
（groundtruth data generated 
using physical simulation)



Our Approach: Multi-Group Representation

• Overlapping Groups: 

• Sub-Networks: 
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•A rigid body rotating with the 
external forces that sum to 0.

Animations of the predicted results
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https://docs.google.com/file/d/189-3vi0A2pZOfxW7SZwTEx48axg98wKj/preview
https://docs.google.com/file/d/1lZlACHkBveZjN4eXLTegcf5MGxdlGeai/preview


•A rope with stretching and 
bending.

Animations of the predicted results
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https://docs.google.com/file/d/1WOdSmh6sWL5BQ9xqFOHfJciuz--TeHmG/preview
https://docs.google.com/file/d/1I2RM5EpqToXS4uabwfBY8UX0cKogN-CL/preview


•The articulated body 

Animations of the predicted results
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https://docs.google.com/file/d/16hMiIYFg3t6zQ14CrWZM210qvSNgBlUx/preview
https://docs.google.com/file/d/1DCaSvK3rvOAnzJA5-QPmhJqKxPJUupmM/preview


•Rigid body collisions

Animations of the predicted results
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https://docs.google.com/file/d/1Her29_Ztm1ZLrIR9Dm8BvjFRSH8qBkff/preview
https://docs.google.com/file/d/1ezhZLN1fWAjaeVE0jhe4gqxEpLD9C3mZ/preview


•The learned constraints:
• The value has a physical meanings; Future work to better separate each constraint.

Discussions
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•The iterative projection:
• A projection process is also used in other applications.
• Fixed point problems.

•Network architectures for more types of systems.



Take-home message

•Intersection between physics simulation and physics learning

•Use the priors from physical simulations to guide the design of network 

architectures

•Specific network architectures target at embedding specific types of priors

- Two additional examples
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•Soft Multicopter Control using Neural Dynamics Identification

More physics learning
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* Yitong Deng, Yaorui Zhang, Xingzhe He, Shuqi Yang, Yunjin Tong, Michael Zhang, Daniel M. DiPietro, Bo Zhu. Soft Multicopter Control using 
Neural Dynamics Identification. Conference on Robot Learning (CoRL 2020)
https://corlconf.github.io/corl2020/paper_396/

https://docs.google.com/file/d/13f37lHTI-59kGH5RjY6pGdoLddjiNnPe/preview
https://docs.google.com/file/d/1Hu-KQ0QdBfQyN-PmOsx0o7tkOhtDgYqO/preview


•Nonseparable Symplectic Neural Networks

More physics learning
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* Shiying Xiong, Yunjin Tong, Xingzhe He, Cheng Yang, Shuqi Yang, Bo Zhu. Nonseparable Symplectic Neural Networks. International Conference 
on Learning Representations (ICLR 2021)
https://shiyingxiong.github.io/proj/NSSNN/NSSNN

https://docs.google.com/file/d/1Owbw7QU4xYCJ-pnoTCuFu4jUrE8HBJWC/preview
https://docs.google.com/file/d/1VKzHLRhfkkj8fYsxmn1T12qDigIhWfGO/preview


More work in our lab: 
bridging physics simulation and machine learning
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Paper references: https://www.cs.dartmouth.edu/~bozhu/

•Simulation: turbulent flows, vortex dynamics, bubbles, surface-tension-dominant contact

•Learning: solid systems, fluid systems, soft-bodied multicopter control, point cloud processing
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Thank you!

For more information:
- https://www.cs.dartmouth.edu/~bozhu/
- https://y-sq.github.io/
- https://www.youtube.com/playlist?list=PLPkEv32KJxkrZZDviP3XG9mJNBHBLBmIm


