

三维重建中的配准算法研究

张举勇 中国科学技术大学

• 多媒体世界正逐渐从2D时代走向3D时代

沉浸式视频会议

数字内容获取 - 场景重建

Newcombe, Izadi, Hilliges, Molyneaux, Kim, Davison, Kohli, Shotton, Hodges, Fitzgibbon KinectFusion: Real-Time Dense Surface Mapping and Tracking, ISMAR 2011

数字内容获取 - 动态物体重建

Our Results

Marc Habermann, Weipeng Xu, Michael Zollhoefer, Gerard Pons-Moll, Christian Theobalt DeepCap: Monocular Human Performance Capture Using Weak Supervision, CVPR 2020

谷歌 - 沉浸式视频会议技术" Starline项目"

由数十个景深扫描传感器以及 65 英寸「光场显示器」实时生成 3D 模型

什么是几何配准?

- 将源模型 P 配准到目标模型 Q
 - 寻找变换*T*(・),使得 *T*(*P*) 与 *Q* 尽可能接近
- 两个主要问题:
 - 如何衡量配准结果的质量?
 - 变换的类型与表示方式?

配准问题中的一些挑战

Noise

Ambiguity

Partial matching

Illumination changes

• 将配准问题表达为能量最小化问题:

$$\underset{T}{\operatorname{arg\,max}} E_{reg}(T, P, Q)$$

$$E_{reg}(T, P, Q) = E_{match}(T, P, Q) + E_{prior}(T)$$

了
配准误差
如何衡量配准结果的质量?
文
变换的类型与表示方式?

配准问题建模

• 配准误差

 $E_{reg}(T, P, Q) = E_{match}(T, P, Q) + E_{prior}(T)$

配准问题建模

● 变换误差

 $E_{reg}(T, P, Q) = E_{match}(T, P, Q) + \frac{E_{prior}(T)}{E_{prior}(T)}$

iterate until convergence:

- 1. sample points \mathbf{p}_i
- 2. find closest points q_i
- 3. reject bad pairs $(\mathbf{p}_i, \mathbf{q}_i)$

5. update scan alignment

◆ 刚性配准阶段所优化的能量 $\min_{\mathbf{R},\mathbf{t}} \sum_{i=1}^{m} \|\mathbf{R}\mathbf{p}_{i} + \mathbf{t} - \hat{\mathbf{q}}_{i}\|_{2}^{2} + \mathbf{I}_{SO(d)}$

Noise

Partial matching

Illumination changes

Juyong Zhang, Yuxin Yao, Bailin Deng Fast and Robust Iterative Closest Point, IEEE TPAMI 2021

Majorization-minimization (MM)

▶ 构造代理函数

$$\overline{E}^{(k)}(\mathbf{R}, \mathbf{t}) = \begin{cases} > E(\mathbf{R}, \mathbf{t}), & (\mathbf{R}, \mathbf{t}) \neq (\mathbf{R}^{(k)}, \mathbf{t}^{(k)}) \\ = E(\mathbf{R}, \mathbf{t}), & (\mathbf{R}, \mathbf{t}) = (\mathbf{R}^{(k)}, \mathbf{t}^{(k)}) \end{cases}$$

$$\left(\mathbf{R}^{(k+1)}, \mathbf{t}^{(k+1)}\right) = \operatorname*{arg\,min}_{\mathbf{R}, \mathbf{t}} \overline{E}^{(k)}(\mathbf{R}, \mathbf{t})$$

◆ Lloyd算法

◆ 结合两步骤 (
$$\mathbf{R}^{(k+1)}, \mathbf{t}^{(t+1)}$$
) = G($\mathbf{R}^k, \mathbf{t}^k$)

◆ 终止条件 ($\mathbf{R}^{(k+1)}, \mathbf{t}^{(t+1)}$) – $G(\mathbf{R}^k, \mathbf{t}^k) = 0$

- Key idea:
 - Use $Q^{k}, Q^{k-1}, \dots, Q^{k-m}$ to approximate residual F

 Q^*

• Linear approximation of F:

$$\widetilde{F}(\sum_{j=0}^{m} \alpha_j \mathbf{Q}^{k-j}) = \sum_{j=0}^{m} \alpha_j F(\mathbf{Q}^{k-j}) \qquad \mathbf{Q}^*$$

Minimize approximate residual:

$$\mathbf{Q'} = \operatorname{argmin} \left\| \widetilde{F} \right\|^2$$

Q*

- linear least squares with m variables

方法总结与结果

◆ 寻找对应:最近邻搜索 ◆ 配准:基于鲁棒Welsch函数进行刚性变换 ◆ 根据 SE(d) 空间中前m步的信息进行加速

在公开数据集上的测试误差(单位:mm): RGBD-SLAM datasets, ETH-laser datasets

RGBD-SLAM	xyz	360	Teddy	ETH-laser	Apartment	Stairs	Mountains
对比方法	78	220	146	对比方法	438	481	482
本方法	21	88	68	本方法	81	30	27

代码: <u>https://github.com/yaoyx689/Fast-Robust-ICP</u>

什么是非刚性注册及其挑战

- ◆ 目标:寻找非刚性变换 ϕ ,使得变形后模型 $\bar{P} = \phi(P)$ 与目
 标模型 Q 尽可能接近。
- ◆ 相比于刚性变换,非刚性变换自由度大、求解难度大

非刚性注册算法与模型

,●建立对应关系:对源模型上的每个点,获取其在目标模 型上的对应点

 $\mathbf{u}_{\rho(i)} = \underset{\mathbf{u} \in \{\mathbf{u}_1, \dots, \mathbf{u}_t\}}{\operatorname{argmin}} \|\mathbf{v}_i - \mathbf{u}\|, \quad \text{for } i = 1, \dots, n$

- 更新变换: 固定对应点,优化求解变换 $E(\mathbf{X}) = E_{align}(\mathbf{X}) + \alpha E_{reg}(\mathbf{X}) + \beta E_{rot}(\mathbf{X})$
 - 数据点匹配项
 - 正则项
 - 旋转项

- 方式一: 将变换定义在源几何模型的每个数据点上
- 方式二: 建立节点图, 变换定义在节点图的每个节点上

◆ 一种适合深度学习的非刚性注册表示方式◆ 一种可微loss函数,以驱动几何曲面之间的注册

Wanquan Feng, Juyong Zhang, Hongrui Cai, Haofei Xu, Junhui Hou, Hujun Bao **Recurrent Multi-view Alignment Network for Unsupervised Surface Registration**, CVPR 2021

非刚性变形表示

所提出表示:
$$\phi(P) = \sum_{r=1}^{K} \mathbf{w}_r \cdot \psi_r(P)$$

约束: $\sum_{r=1}^{K} \mathbf{w}_r(i) = 1, \quad \forall i = 1, 2, \dots, M.$

・ $\phi(P)$: 非刚性变换; $\{\psi_r\}_{r=1}^K$: 一系列刚性变换; $\mathbf{w}_r \in \mathbb{R}^{M \times 1}$: 逐点蒙皮权重・蒙皮权重逐点可学习,可根据目标曲面自适应变化

将三维物体投影到二维平面上并通过从初始点云、目标点云 分别渲染得到的深度图、Mask图构造损失函数

代码: <u>https://github.com/WanquanF/RMA-Net</u>

Dataset	Metric	Input	CPD	BCPD	CPD-Net	PR-Net	Ours
Deform	CD	37.246	4.126	2.375	14.678	29.457	0.599
	EMD	25.952	7.853	5.478	21.696	25.192	0.386
Face	EMD	1.230	1.168	0.979	1.054	1.304	0.578
	MSE	21.469	9.568	8.013	13.752	14.575	5.245

Table 2. Results on the deformable objects dataset (denoted as Deform for short, with metrics $CD(\times 10^{-4})$ and $EMD(\times 10^{-3})$) and the FaceWareHouse dataset (denoted as Face for short, with metrics $EMD(\times 10^{-2})$ and $MSE(\times 10^{-4})$).

算法流程:采用迭代格式,交替更新对应 关系与求解形变(通常通过求解优化问

题),流程大致如下:

基于节点图的非刚性配准

最终使得 lim $P_k = Q$ 。该算法流程存在 $k \rightarrow \infty$ 对初值、重叠区域、异常值敏感等问题。

Registration

Source

基于可微变形图的非刚性配准

- 整体上为 Course to Fine的模式:
 - 先基于节点图, 求解Source模型structure level的形变
 - 再逐点求解displacement,从而实现vertex-level的refinement

非刚性配准结果动态展示

Differentiable Deformation Graph based Neural Non-rigid Registration, Submitted

应用展示:基于神经渲染的完整人头重建

结果展示

应用展示:单目自转下的动态人体重建

应用展示:单目自转下的动态人体重建

应用展示:单目任意动作下的动态人体重建

总结&展望

- 根据数据中噪音的实际分布自适应调整,提高算法鲁棒性
- 将配准迭代算法看作固定点迭代,从而设计加速算法来提高
 配准算法的收敛速度
- 设计不依赖于数据的非刚性变形表示方式,并借鉴可微渲染,提出基于深度学习的非刚性配准算法
- 将网络预测对应关系与基于节点图的非刚性变形在可微框架
 下进行端到端训练