Towards Practical Applications of NeRF

for Novel View Synthesis & 3D Reconstruction

Songyou Peng

Collaborators

Christian Reiser

Michael Oechsle

Yiyi Liao

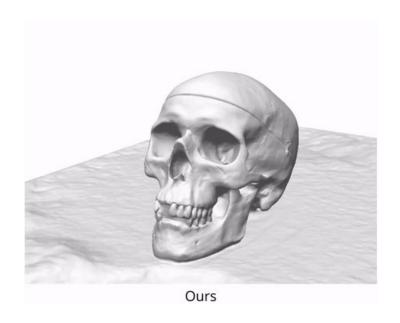
Andreas Geiger

KiloNeRF: Speeding up NeRF with Thousands of Tiny MLPs

Christian Reiser, Songyou Peng, Yiyi Liao, Andreas Geiger https://arxiv.org/abs/2103.13744

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

Michael Oechsle, Songyou Peng, Andreas Geiger https://arxiv.org/abs/2104.10078



NeRF is awesome!

But some problems still exist...

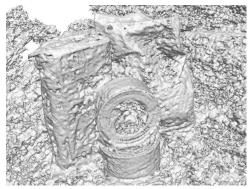
Problem 1: NeRF's inference time is super long
NeRF 800x800

56 s

Problem 1: NeRF's inference time is super long

Control KiloNeRF speeds up NeRF rendering by >2000x

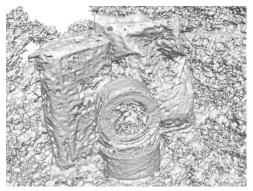
Problem 2: NeRF's underlying geometry is poor

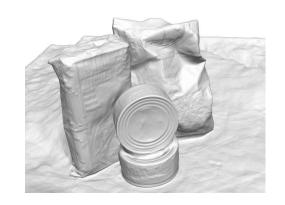


Rendering

NeRF Geometry

Problem 2: NeRF's underlying geometry is poor





Rendering

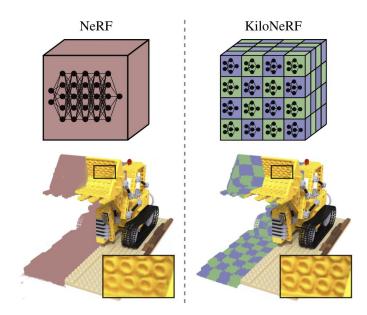
NeRF Geometry

UNISURF Geometry

UNISURF unifies NeRF & surface rendering for accurate reconstruction

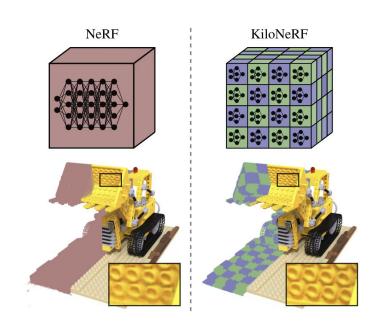
KiloNeRF

Speeding up NeRF with Thousands of Tiny MLPs



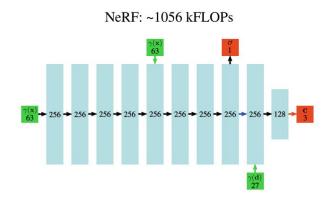
Key Idea

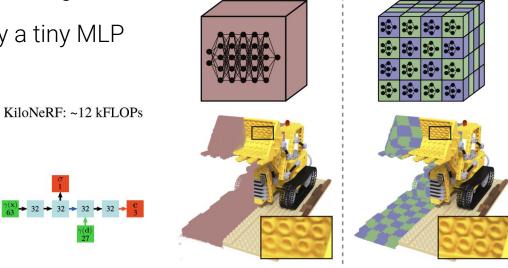
- Partition a scene into a 16³ uniform grid
- Each grid cell is represented by a tiny MLP



Key Idea

- Partition a scene into a 16³ uniform grid
- Each grid cell is represented by a tiny MLP





NeRF

KiloNeRF

87x reduction in FLOPs!

* FLOP: floating points operations

KiloNeRF

Training:

- Distill a trained NeRF model into our KiloNeRF model
 - Randomly sampled points, their predicted alpha & color values should match!
- 2. Fine-tune the KiloNeRF model on training images

Distillation

Reason: A global NeRF implicitly enforces the multi-view consistency, while KiloNeRF is locally restricted to individual MLPs.



(a) Without Distillation

(b) With Distillation

KiloNeRF

Training:

- Distill a trained NeRF model into our KiloNeRF model
 - Randomly sampled points, their predicted alpha & color values should match!
- 2. Fine-tune the KiloNeRF model on training images

Inference:

- 1. Empty Space Skipping (ESS) with a pre-computed 2563 occupancy grid
- 2. **Early Ray Termination (ERT)**: when transmittance < ε, stop!
- Evaluate tiny MLPs in parallel

KiloNeRF

Method	Render time ↓	Speedup ↑	
NeRF	56185 ms	_	
NeRF + ESS + ERT	788 ms	71	
KiloNeRF	22 ms	2554	

Results

Qualitative Results

Quantitative Results

Resolution		$\begin{array}{c} \text{BlendedMVS} \\ 768 \times 576 \end{array}$	Synthetic-NeRF 800×800	Synthetic-NSVF 800×800	Tanks & Temples 1920×1080
LPIPS ↓	NeRF	0.07	0.08	0.04	0.11
	KiloNeRF	0.06	0.03	0.02	0.09
Render time (milliseconds) \	NeRF	37266	56185	56185	182671
	KiloNeRF	30	26	26	91
Speedup over NeRF ↑	KiloNeRF	1258	2165	2167	2002

Comparison to concurrent NeRF speed-up papers

Туре	Neural	Tabulation-based		
	KiloNeRF	PlenOctree	SNeRG	FastNeRF
GPU Memory Consumption	< 100 MB	1930 MB	3442 MB	7830 MB

⇒ KiloNeRF has a larger potential for large-scale NVS

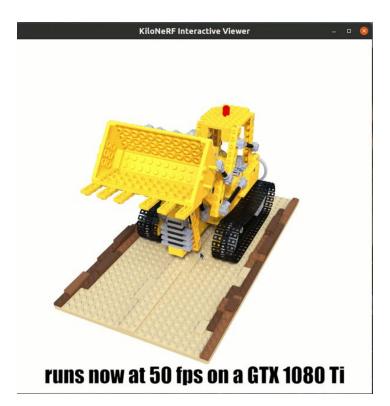
Stay tuned! We will release a blog post providing more thorough comparisons.

Conclusion

- Speed up NeRF significantly (~ 2000x) without loss of quality
- Compared to concurrent works, KiloNeRF requires much less GPU memory
- Can be plugged into almost all coordinate-based networks

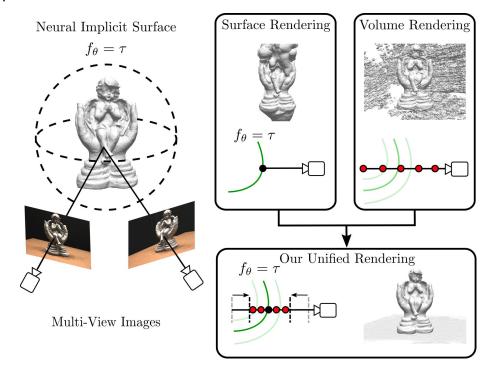
Limitations

- KiloNeRF can only work on bounded scenes
 - Efficient data structures (e.g. Octree) could help to scale to larger scenes
- Expensive training time
 - Combine with PixelNeRF or MVSNeRF can help learning fast

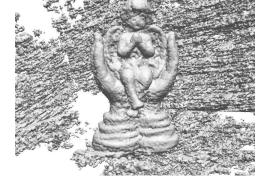


https://github.com/creiser/kilonerf

Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction



The underlying geometry of NeRF (volume rendering) is poor [1, 2]



Rendering

NeRF Geometry

^[1] Kellnhofer et al.: Neural Lumigraph Rendering, CVPR 2021

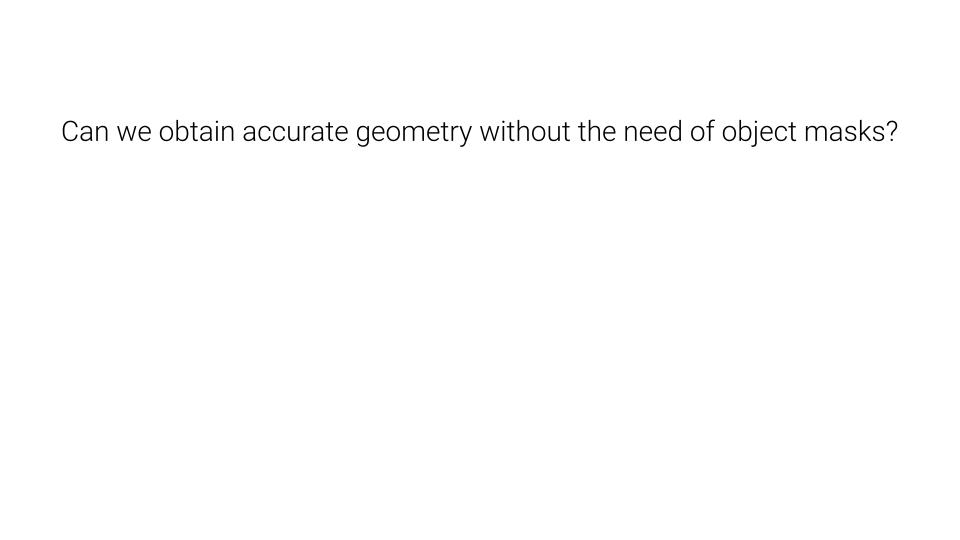
^[2] Azinovic et al.: Neural RGB-D Surface Reconstruction, 2021

Surface rendering methods have great geometry, but require object masks

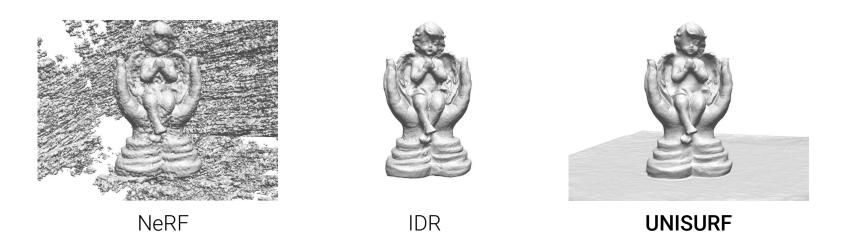
Rendering

NeRF Geometry

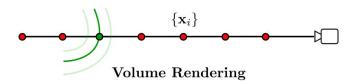
IDR Geometry [1]



Can we obtain accurate geometry without the need of object masks?

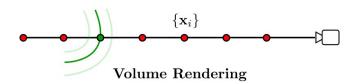


We unify radiance fields and implicit surface models, enabling both volume rendering and surface rendering



Early Stage: Volume rendering like in NeRF, but with occupancies

NeRF rendering:
$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} \alpha_i(\mathbf{x}_i) \prod_{j < i} (1 - \alpha_j(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$
 $\alpha_i(\mathbf{x}) = 1 - \exp(-\sigma(\mathbf{x}) \delta_i)$

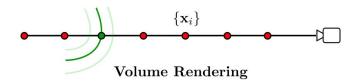


Early Stage: Volume rendering like in NeRF, but with occupancies

NeRF rendering:
$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} \alpha_i(\mathbf{x}_i) \prod_{j < i} (1 - \alpha_j(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$
 $\alpha_i(\mathbf{x}) = 1 - \exp(-\sigma(\mathbf{x}) \delta_i)$

Assuming a solid object, the alpha is just a continuous occupancy field

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} o(\mathbf{x}_i) \prod_{i < i} (1 - o(\mathbf{x}_i)) c(\mathbf{x}_i, \mathbf{d})$$



Early Stage: Volume rendering like in NeRF, but with occupancies

NeRF rendering:
$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} \alpha_i(\mathbf{x}_i) \prod_{j < i} (1 - \alpha_j(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$
 $\alpha_i(\mathbf{x}) = 1 - \exp(-\sigma(\mathbf{x}) \delta_i)$

Assuming a solid object, the alpha is just a continuous occupancy field

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} o(\mathbf{x}_i) \prod_{j < i} (1 - o(\mathbf{x}_j)) c(\mathbf{x}_i, \mathbf{d})$$

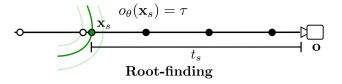
$$\mathbf{1} \text{ for the first occupied sample}$$

$$\mathbf{0} \text{ for all other samples}$$

→ Sampled points near to the surface have larger influence to the predicted color

Later Stage: Find surface points, decrease the range of volume rendering

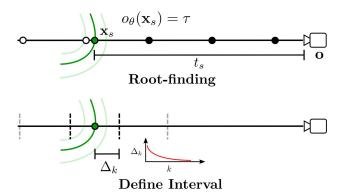
a) Find the surface point



Later Stage: Find surface points, decrease the range of volume rendering

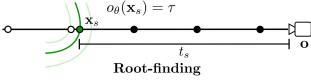
a) Find the surface point

b) Define the interval

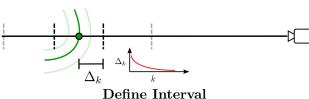


Later Stage: Find surface points, decrease the range of volume rendering

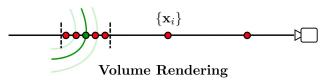
a) Find the surface point



b) Define the interval



c) Volume rendering



Loss Function

a) Image reconstruction loss

$$\mathcal{L}_{rec} = \sum_{\mathbf{r} \in \mathcal{R}} \|\hat{C}_v(\mathbf{r}) - C(\mathbf{r})\|_1$$

b) Surface smoothness regularization

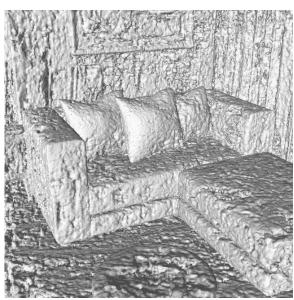
$$\mathcal{L}_{reg} = \sum_{\mathbf{x}_s \in \mathcal{S}} \left\| \mathbf{n}(\mathbf{x}_s) - \mathbf{n}(\mathbf{x}_s + \boldsymbol{\epsilon}) \right\|_2$$

Results

Results on DTU

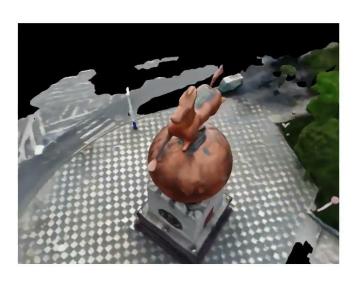


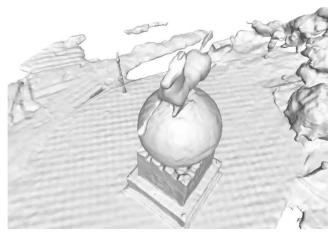
Results on Indoor Scene



GT View NeRF **UNISURF**

Results on BlendedMVS





Conclusion

- Unify NeRF and implicit surfaces for 3D reconstruction from multi-view images
- Accurate reconstruction without the need of masks

Limitations

- Hard to reconstruct textureless regions
- Slow inference / meshing time
 - Our latest work to tackle this point

Peng et al.: Shape As Points: A Differentiable Poisson Solver. https://arxiv.org/abs/2106.03452

More NeRF-related Works from Our Group

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis

Katja Schwarz*, Yiyi Liao*, Michael Niemeyer and Andreas Geiger

NeurIPS 2020

https://github.com/autonomousvision/graf

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields

Michael Niemeyer and Andreas Geiger

CVPR 2021 (Best Paper Candidate)

https://github.com/autonomousvision/giraffe

Thank you!