Learning to Automate Chart Layout Configurations
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0. Background: Chart

Charts are easy to read, and arguably one of the most easiest way

for the masses to assess data.
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4Aost western countries are on the same coronavirus trajectory. Hong Kong
ind Singapore have managed to slow the spread

By far the most visited page in NY Times
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0. Background: Chart

Charts have been created and shared at an unprecedented speed.
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Note

Note

Google Search Trend Globally: Data v.s. Chart Chart has surpassed Image globally in
Google Search Trend since Jan 2020




0. Background: Chart Layout

Chart layouts directly influence the readability and aesthetics.

= Google Charts Q

Stacked bar charts iy

A stacked bar chart is a bar chart that places related
values atop one another. If there are any negative
values, they are stacked in reverse order below the
chart's axis baseline. Stacked bar charts are typically
used when a category naturally divides into
components. For instance, consider some
hypothetical book sales, divided by genre and
compared across time
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0. Background: Chart Layout

Chart layouts directly influence the readability and aesthetics.
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Default styles in Excel (charting software) and Vega-Lite (charting library)



0. Background: Chart Layout

Manually adjusting chart layouts faces problems.
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Responsive Settings Multiple Parameters Poor User Experience (UX)




0. Background: Chart Layout

Manually adjusting chart layouts faces problems.

Responsive Settings Multiple Parameters Poor User Experience (UX)

How to automatically optimize multiple parameters for
chart layouts given constraints (such as screen widths)?




1. Related Work: Visualization Recommendation

Visualization recommendation is the problem of automatically
recommending visual encodings.
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1. Related Work: Visualization Recommendation

Most work focused on recommending data-encodings.
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1. Related Work: Visualization Recommendation

Less research addresses non-data-encodings (such as layouts).

Rule-Based Approach ML-based Approach
e mitmedialab/viznet
33% . ) VizNet is a repository providing real-world datasets L
that enable, among other things, (re)running
. empirical studies with higher ecological validity
Data Encodings '
2% a2 - O 2 ‘ ﬁ?‘t ?23: (@)

#7) Much research about what's
“" good/bad data encodings.

Non-data Encodings @ @

(Layout) Little consensus @ Little dataset

- Much dataset
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2. Rule-based Approach

Problem: Automated responsive visualization

How to automatically optimize multiple parameters for
chart layouts given a screen size?

What are good/bad chart layouts?
. Mobile-friendliness issue
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2. Rule-based Approach

Mobile-friendliness issue
. Qut-of-view-box

Younger Catholics Are Primarily
Hispanic
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2. Rule-based Approach

Mobile-friendliness issue
. Qut-of-view-box
. Unreadable font-size
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2. Rule-based Approach

Mobile-friendliness issue
. Out-of-view-box

. Unreadable font-size
. Overlapping text
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Grouped Bar Chart

Grouped Bar Chart
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2. Rule-based Approac

Mobile-friendliness issue
. Out-of-view-box

. Unreadable font-size
. Overlapping text

. Unwanted white space
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= Google Charts

Stacked bar charts @

A stacked bar chart is a bar chart that places related
values atop one another. If there are any negative
values, they are stacked in reverse order below the
chart's axis baseline. Stacked bar charts are typically
used when a category naturally divides into
components. For instance, consider some
hypothetical book sales, divided by genre and
compared across time:
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2. Rule-based Approach

Approach: Reinforcement Learning

- Chart

B L L T e e L ]
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— Mobile-friendly Issue
— Change of loss (L)

Example:
S: SmallFontSize
L: 8px

—

— Modify the chart

Example:
AT: IncreasefontSize
A2: DecreasefontSize
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2. Rule-based Approach

Approach: Reinforcement Learning

i — Mobile-friendly Issue — Modify the chart
Chart ‘ — Change of loss (L) ‘
o : Example: Example:
- S: SmallFontSize A1: IncreaseFontSize
: L: 8px A2: DecreasefFontSize
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2. Rule-based Approach

Approach: Reinforcement Learning

Increase P(AT1|SmallFontSize)

‘ State(S) — Mobile-friendly Issue Action(A) = Modify the chart
Reward(R) Change of loss (L) ‘ Policy P(A[S)

Environment - Chart

Example: Example:

S: SmallFontSize A1: IncreaseFontSize
L: 8px + 1px = 9px A2: DecreaseFontSize
R: 1px
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2. Rule-based Approach
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2. Rule-based Approach: Limitation

MobileVisFixer: Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning Framework

Original I3 Deconstruction Improved g Control Panel
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Cost

When the axis exceeds the right of the view box, the agent will increase the YRangeMin.



2. Rule-based Approach: Limitation
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The cost was the area
exceeding the view box.
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Compress height
reduces this cost as well.
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2. Rule-based Approach: Limitation

The performances highly rely on manually-crafted rules and/or
cost functions.

Even seemingly reasonable cost functions might be problematic.

Can we directly learn layout qualities from human
perception data?
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3. Machine-Learning Based Approach

Miles_per_Gallon

amc ambassador dpl
e |
phymouth fury i
chevrolet impala 1
ford galaxie 500 —
ford torinG | ——
amc rebel sst | S
plymouth sate |li e —
buick skylark 320  |—
hevrolet chevelle rmalib L —

Chart Human Score
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Inconsistent scoring scales among participants
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3. Machine-Learning Based Approach

Comparison is an easier task than scoring a chart.

Which of the following layout do you prefer (in terms of aesthetics)?

Top Bottom

Two-forced Alternative Choice
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3. Machine-Learning Based Approach

Learning to automate chart configurations from crowdsourced
paired comparison
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3. Machine-Learning Based Approach

Deep learning on paired comparison data

|I|I|;I1|n\|“||.. it on i

. To predict a higher score
Scoring
Network for the positive chart in a pair
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3. Machine-Learning Based Approach: Evaluation

Two experiments:
Exp. 1: 3 parameters in bar charts
Exp. 2: 6 parameters in bar charts
Baseline:
RankSVM

Hand-crafted cost functions for layout qualities

Ours RankSVM White Space Scale Unity Balance All
Exp.1(N =1,177) 76.60 70.83 57.28 56.26  52.00 56.08 60.81
Exp. 2 (N =1,333) 78.27 64.48 58.24 61.72  56.21 63.18 68.73

Model Performance in Accuracy
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3. Machine-Learning Based Approach: Evaluation

Our method recommended better chart configurations

Baseline:

Human

Random o

Ours v.s. Human
Ours v.s. Default

Ours v.s. Random
Human v.s. Default

Human v.s. Random

Default (Excel and Vega-lite)

User Study 1 (N = 50)

User Study 2 (N = 80)

59% | 41% 51% | 49% ns
| 6337 | | s6%[3an |
| 67%33% | | 66%|34% |
| 52% |48k ns | s3u[3m ]
| 64% [36% | 66% | 34%

Default v.s. Random ns X ns

Ours

Human ™ Default Random

29



3. Machine-Learning Based Approach

Our method saved user time.

User Study 1
User Study 2

User Study 1
User Study 2
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3. Machine-Learning Based Approach: Limitation

Paired comparison has exponential complexity.

6 parameters
10 possible values per parameter
= 10%6 possible combinations of parameter values

Full paired comparison requires 10%6 C 2.

0 How to (adaptively) sample important pairs for
" comparison?




4. Discussions and Implications

. Do not trust the defaults.
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4. Discussions and Implications

"What is beautiful is good"?

Steps Steps
150
1000 N 1000
ay 3 Day 4 Day 5 Day 6 Day 1 Day 2 Day 3 Day 4
Before After

Google's Smooth Line Chart
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4. Discussions and Implications

From Data Visualization to Visualization Data

?

Note

Chart has surpassed Image globally in
Google Search Trend since Jan 2020

How Al could process and
analyze visualizations?

- Recommendation
Querying

Summarizing
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4. Discussions and Implications

What makes visualization data different?
Visualization data is characterized as multi-modal data.

? How to represent and fuse different modals?

? How to translate from one modal to another?

? How to align one modal with another?



4. Discussions and Implications

What makes visualization data different?
. Visualization data is characterized as multi-modal data.

. Visualization data is unnatural artefacts purposefully
constructed with domain knowledge, which is ditficult to learn.

? How to develop ML models that are more tailored to visualization data?

? How to combine ML approaches with domain knowledge?



4. Discussions and Implications

What makes visualization data different?
Visualization data is characterized as multi-modal data.
Visualization data is unnatural artefacts purposefully

constructed with domain knowledge, which is difficult to learn.

Visualization data is more susceptible to detailed local
information.

? How to develop ML models with high accuracy and granularity?
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312 Winner Circle Bias . 1 . -‘/“ ) ‘.D

E i &0 Wi,
S 1 FO RS

- —

R oo »
——

37



4. Discussions and Implications

What makes visualization data different?
. Visualization data is characterized as multi-modal data.

. Visualization data is unnatural artefacts purposefully
constructed with domain knowledge, which is difficult to learn.

. Visualization data is more susceptible to detailed local
information.

. The encoded data brings up several data-specific challenges
such as mathematical reasoning.

? How to learn mathematical reasoning?



5. Take-home Messages

. Chart layouts influence user experiences (UX) such as
readability and aesthetics.

't is helpful to automate parameter configurations via ML,
saving user time and improving results.

. Visualization is becoming a new type of
data that warrants deep research.




