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Design Computing and eXtended Reality
What will the future of work, entertainment, and everyday life @ cXR 72

be 5-10 years from now?

Interests: Computer Graphics, Computer Vision, HCI / Craphice
Techniques: Optimization, Artificial Intelligence, Machine Desiqomr Tl T

Learning, Simulation L

. Vision /| HCl

Applications: VR/AR, Computational Design, User Interfaces Yy



Al for Design (e.g., interior design, architectural design, product design)

[SIGGRAPH 2015] [SIGGRAPH Asia 2016] [SIGGRAPH 2016]

[SIGGRAPH 2011]
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Scene Understanding and Reconstruction (e.g., stereo, affordance analysis)

[ICCV 2017]

[ICCV 2015]

[CVPR 2013]
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[3DV 2016]

[CHI 2021]




Virtual Reality Adaptive Training (e.g., driving, disaster response, exergaming, education)

[VR 2018] [VR 2017]

[SIGGRAPH 2020]




Computational Interaction (e.g., novel wayfinding tool, virtual experiences, synthesized sound/speech)

[CHI 2019] [CHI 2019] [CHI 2021]
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A woman is seen speaking
to the camera and leads
into her playing a routine.

The crowd cheers for
the people.

Just Exercise

[CHI 2019] [SIGGRAPH Asia 2019]
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Computational Design



Computational Design Framework

Design Solution Space
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Computational Design Framework

Design Goals
Functionality (e.g., ergonomics, physical properties)

Aesthetics prior (e.g., color, style)
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Computational Design Framework

Design Constraints
* Space
« Budget (e.g., cost, material, time, labor)

12'8" X 11 11'6" X 10"




Computational Design Framework

Design Variables Rﬂ 1
Positions of objects '\




Computational Design Framework

Design Variables Rﬂ ;
Orientations of objects '\




Computational Design Framework

Search for Solutions
*  Optimization
« Statistical Inference (e.g., MCMC)

Low Cost High Cost

(Good Design) (Bad Design)



Virtual Environment Synthesis



Virtual Environment Synthesis

“Make it Home: Automatic Optimization of Furniture Arrangement”, SIGGRAPH 2011
Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F. Chan, Stanley J. Osher
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Design Acceleration

Traditional (CAD): Our Method (Computational Design):

e Bl Der Eib
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Our Approach

Learning Step

Positive Examples

Relationship
Extraction:
—»| 1) Spatial

2) Hierarchical
3) Pairwise

Initialization

Optimization Ste

Cost-term
Definitions

Update Scene
by a Step

No L Terminate?

Yes

Synthesis Finished
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Optimization: Total Cost Function

C(§) = waCa () + WiCo () + Wyt Co (§)  Fonomic:

FWECiH () + WhCh(9) } o
+ Wgair Cgair (¢ ) + Wgair Cgair (¢ )

¢ ={(pi,0:)|i = 1..n}

Position, Orientation
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Optimization

Simulated Annealing
« Computational imitation of physical annealing process

Cooling schedule:
« At the beginning, high temperature:

— "heat up” furniture objects, allow flexible rearrangement

*  Over time, temperature lowers gradually:

— rearrangement is less aggressive
* At the end, temperature drops to zero:

— refine final arrangement



Optimization
» At each iteration, a “move” is proposed,

* Moves: translation, rotation, swapping objects, moving pathway controls
+ Transition:

» Metropolis criterion determines transition probability:

/(9
a(¢'|9) = mln{ }
@ C' decreases,a = 1

=min [exp(,B(C(¢)—C(¢'))),1] C increases, 0 < a < 1

where f(¢) = e-ﬁC(¢)
1
Temperature
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Design Exploration




3D Walkthrough
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Architectural Layout Synthesis

“Crowd-driven Mid-scale Layout Design”, SIGGRAPH 2016 #  sicorapiizors
Tian Feng, Lap-Fai Yu, Sai-Kit Yeung, KangKang Yin, Kun Zhou

Crowd Density Evaluation




Synthesis




Architectural Layout Design

Input
Layout domain
Possible sites
(e.g., boutiques, restaurants, restrooms)

Output
Floor plan
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Architectural Layout Design

®
Input Design Goals? Output
*  Layout domain Incorporating Human Factors

. Possible sites
(e.g., boutiques, restaurants, restrooms)

*  Floor plan
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Crowd Simulation

e Typical Metric: Crowd Density
e Traditional:
e Ours: + Optimization




Layout Optimization

|

Layout Optimization

Agent-based Costs

\

——> | Optimizer | ——>

t

Prior Costs

C(qb) = CAWAT + CPWPT

C A :Agent-based Cost Computed by agent-based simulation
(Mobility, Accessibility, Coziness)
Cp : Prior Cost Computed by real world layouts’ statistics

(Floor Area Ratio, Total # of sites, # of each type of sites)
28



Mobility: how smooth is the agents’ walking experience

Low Cost

Accessibility: how reasonably sites are distributed

Low Cost

Coziness: how good agents feel in sites
High Cost
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Train Station Buidling
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Perceptual Data-Guided Computational Design

e Human user data tracked in Virtual Reality
e Head, hand, body, eye gaze, EEG, etc.

[Courtesy of Stephan Lu]



Learning Workspace Preferences from VR

“Functional Workspace Optimization via Learning Personal Preferences from Virtual Experiences”, IEEE VR, 2019
Wei Liang, Jingjing Liu, Yining Lang, Bing Ning, Lap-Fai Yu
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(a) Initial workspace (b) Personal preferences learning (c) Optimization (d) Output workspace

taskl, task2, task3....

floor plane
optimization

wall plane
optimization
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(a) Initial workspace (b) Personal preferences learning (c) Optimization (d) Output workspace

taskl, task2, task3....

floor plane
I optimization

wall plane
optimization

t

) i Fig. 4: The position distribution when the user interacts with the corre-
Fig. 3: An example of personal preferences. Each colored bar depicts  sponding component. We use a heatmap to visualize the visited times at
the user interacting with the component with the same color in the  each point when the user interacts with the corresponding component.

scene. The ordered sequence of the components represents the personal  The redder the color is, the more times the user visited that point.
preferences for the workflow.
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(a) Initial workspace (b) Personal preferences learning (c) Optimization (d) Output workspace
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taskl, task2, task3....

floor plane
optimization

2H wall plane
optimization
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Personalized VR Driving Training

“Synthesizing Personalized Training Programs for Improving Driving Habits via Virtual Reality”, /EEE VR, 2018
Yining Lang, Wei Liang, Fang Xu, Yibiao Zhao, Lap-Fai Yu
Pedestrians:

Eye-tracking VR headset Turning:

Ve AE A WY
e———gy o = i
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Driving
Habits

Pre-Evaluation

Optimization

Route ..
Training

Post-Evaluation

Dynamic Cost

Static Cost

Driving Habits:

Signal before a Turn Signal before Changing Lane

Stop for Pedestrians




Optimized Training Routes:

(c) Pass Specified Positions
VR Training:
Gaze tracked in VR




Terrain Generation for VR Biking

Fitbit VR bike: F e B

“Exertion-Aware Path Generation”, SIGGRAPH 2020
Wanwan Li, Biao Xie, Yongqi Zhang, Walter Meiss, Haikun Huang, Lap-Fai Yu & SIGERAPH It

2020 $2020.SIGGRAPH.ORG HEYI]N“




Overview

Input

Terrain Mesh

Exersice Targets

Total Work @

Difficulty

-

Path Initialization

Path Optimization

Update Path Evaluate Path
Exertion Factors:
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HMD,Oculus Rift

Arduino




VR Exercise Biking




Scene-Aware Virtual Agents



Virtual Agent Positioning

“Virtual Agent Positioning Driven by Scene Semantics in Mixed Reality”, /EEE VR, 2019
Yining Lang, Wei Liang, Lap-Fai Yu




Input Preprocessing Optimization Output
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Virtual Pet Synthesis

“Scene-Aware Behavior Synthesis for Virtual Pets in Mixed Reality”, ACM CHI 2021
Wei Liang, Xinzhe Yu, Rawan Alghofaili, Yining Lang, Lap-Fai Yu




(a) Input (b) Pet Behavior Synthesis

Data-driven Pet Behavior Generator
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litter table scratcher  bowl litter couch

R
(a) Path geometry cost. (b) Optimized paths.

Fig. 6. (a) A visualization of the path geometry cost for each cell. The redder a cell is, the higher its cost value is. (b) An illustration of
the optimized paths. The state bar at the top shows the sequence of objects that the pet travels to. Each color refers to a path going
from one object’s location to another object’s location (e.g., purple refers to going from the litter to the table).

(b) Bedroom (c) Kitchen

(a) Living room

midling

[iresting
Weating
[1soiling

[scratching

Fig. 7. The living room, bedroom, and kitchen scenes used in our experiments. The top row shows the input scene. The middle row
demonstrates some generated behaviors. The bottom row shows the generated behavior sequence visualized by a state bar. Each
sequence consists of 100 behaviors and each behavior is shown by one color in the bar.



Navigation Aid



Adaptive VR Navigation Aid

-
I+l
= 2019
“Lost in Style: Gaze-Driven Adaptive Aid for VR Navigation”, CH/ 2079
Rawan Alghofaili, Yasuhito Sawahata, Haikun Huang, Hsueh-Cheng Wang, Takaaki Shiratori, Lap-Fai Yu
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Navigation Aids in Virtual Worlds




?
FOVE VR eye-tracking headset Eye-tracking gaze sequences




Navigation Need Classifier (LSTM)




Navigation Need Classifier (LSTM)







Adaptive navigation arrow Permanent navigation arrow




Dawn of VR/AR gaming

« What will be the de facto tools / techniques?

Game designer’s end Player’s end

content creation / authoring interaction
level design user interface
animation collaboration
gameplay / genres communication
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4 Reals of VR

The screen is a window through
which one sees a virtual world. The
challenge is to make that world look

real, act real, sound real, feel real.

— Juvan Sutherland —

AZ QUOTES




Real yet?

Act real? Sound real?

AR Agent Positioning [VR 19] Affordance Reasoning [ICCV 17] Audible Panorama [CHI 19]

& |

Feel real? Shared realism

Tactile inference? Haptics-aware 3D synthesis? Multi-user VR Experiences
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Please check out my research website
for many projects and demos!

https://cs.amu.edu/~craigyu/



https://cs.gmu.edu/%7Ecraigyu/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64

