Semantic Neural Representation for Scene Understanding

Shuaifeng Zhi
$4^{\text {th }}$-year PhD Student
Dyson Robotics Lab at Imperial College London

Motivation | SceneCode | Semantic-NeRF | Conclusion

Scene Representations in uSLAM

- Scene representation concerns the environmental attributes that can be captured in a SLAM system's world model.
- Scene representations in vSLAM have gradually progressed from sparse point sets to dense geometric 3D maps and more recently to neural representations.

Motivation | SceneCode | Semantic-NeRF | Conclusion

Classical Geometric Scene Representation

Point Cloud

Voxel
Mesh

Explicit

(c)

Signed Distance Field

Neural Scene Representation

Explicit Representation

- GQN [Eslami et al. 2018]
- CodeSLAM [Bloesch et al. 2018]
- SceneCode [Zhi et al. 2019]
- DeepVoxels [Sitzmann et al. 2019]
- Neural Volumes [Lombardi et al 2019]
- Latent Fusion [Park, et al. 2020]

Implicit Representation

- SRN [Sitzmann etal. 2019]
- DeepSDF [Park et al. 2019]
- PIFu [Shunsuke et al. 2019]
- CON [Mescheder et al. 2020]
- NeRF [Mildenhall et al. 2020]
- NeRF Explosion...

Neural Scene Representation

Explicit Representation

- GQN [Eslami et al. 2018]
- CodeSLAM [Bloesch et al. 2018]
- SceneCode [Zhi et al. 2019]
- DeepVoxels [Sitzmann et al. 2019]
- Neural Volumes [Lombardi et al 2019]
- Latent Fusion [Park, et al. 2020]

Implicit Representation

- SRN [Sitzmann etal. 2019]
- DeepSDF [Park et al. 2019]
- PIFu [Shunsuke et al. 2019]
- CON [Mescheder et al. 2020]
- NeRF [Mildenhall et al. 2020]
- NeRF Explosion...

Neural Scene Representation

Explicit Representation

- GQN [Eslami et al. 2018]
- CodeSLAM [Bloesch et al. 20I8]
- SceneCode [Zhi et al. 20I9]
- DeepVoxels [Sitzmann et al. 2019]
- Neural Volumes [Lombardi et al 2019]
- Latent Fusion [Park, et al. 2020]

Implicit Representation

- SRN [Sitzmann etal. 2019]
- DeepSDF [Park et al. 2019]
- PIFu [Shunsuke et al. 2019]
- CON [Mescheder et al. 2020]
- NeRF [Mildenhall et al. 2020]
- NeRF Explosion...

Existing Semantic Scene Representations

SemanticFusion [McCormac et al. 2017]

Semantically Fused Dense Reconstruction

Motivation | SceneCode | Semantic-NeRF | Conclusion

Existing Semantic Scene Representations

SemanticFusion [McCormac et al. 2017]

Semantically Fused Dense Reconstruction

Motivation | SceneCode | Semantic-NeRF | Conclusion

SemanticFusion

In many semantic mapping systems,

- mature geometric SLAM systems are used and their semantic representation relies on the geometric one.
- 3D dense map elements are associated with $2 \mathrm{D} / 3 \mathrm{D}$ semantic predictions.
- semantics of each map element is individually processed.

Motivation | SceneCode \| Semantic-NeRF | iLabel | Conclusion

Existing Semantic Scene Representations

If dense geometry can be represented by a compact code, how about dense semantic labelling?

SceneGode

- Introduce a compact and optimisable semantic representation using an imageconditioned variational auto-encoder.
- Propose a new multi-view semantic label fusion method maximising semantic consistency.
- Build a monocular dense semantic 3 D reconstruction system, where geometry and semantics are tightly coupled into a joint optimisation framework.

Motivation | SceneCode | Semantic-NeRF | Conclusion

Network-Training Time

- Compact and optimisable code representations of depth and semantics via a CVAE.
- Allow inference-time refinement via photometric and semantic costs.

Network-Test Time

- Full-zero codes are used for both initialisation and monocular predictions.

Why Linear Decoder?

A linear VAE-decoder after the 'Concat \&Multiply' operation makes the output non-linear w.r.t. input colour images while linear w.r.t. latent codes.

$$
\begin{array}{r}
D\left(c_{d}, I\right)=D_{0}(I)+J_{d}(I) c_{d} \\
S\left(c_{s}, I\right)=S_{0}(I)+J_{s}(I) c_{s}
\end{array}
$$

- $J_{s / d}$ is the learned linear Jacobians
- c_{d} and c_{s} are code-representations of depth and semantic
- D_{0} and S_{0} are monocular predictions with full-zero codes, i.e.,

$$
D_{0}(I)=D(0, I), S_{0}(I)=S(0, I)
$$

What Has Been Learned by Semantic Code Representations?

Visualisation of Semantic Code-Jacobians

Exploring the Latent Space

Multi-view Fusion via Code-optimisation

Dense Geometry Refinement

Depth code can be refined by minimising both photometric error $\mathbf{r}_{\mathbf{i}}$

 and geometric error $\mathbf{r}_{\mathbf{z}}$:$$
\begin{gathered}
r_{i}=I_{A}\left[\boldsymbol{u}_{A}\right]-I_{B}\left[w\left(\boldsymbol{u}_{A}, \boldsymbol{c}_{d}^{A}, \boldsymbol{T}_{B A}\right)\right] \\
r_{z}=D_{B}\left[w\left(\boldsymbol{u}_{A}, \boldsymbol{c}_{d}^{A}, \boldsymbol{T}_{B A}\right)\right]-\left[\boldsymbol{T}_{B A} \pi^{-1}\left(\boldsymbol{u}_{A}, D_{A}\left[\boldsymbol{u}_{A}\right]\right)\right]_{Z}
\end{gathered}
$$

Multi-view Fusion via Code-optimisation

Dense Semantics Refinement

$$
r_{s}^{\prime}=D S\left(S_{A}\left[\mathbf{u}_{A}\right], S_{B}\left[w\left(\mathbf{u}_{\mathbf{A}}, \boldsymbol{c}_{d}^{A}, \boldsymbol{T}_{B A}\right)\right]\right)
$$

However, simply maximising semantic consistency has trivial solutions, e.g., wrong but consistent labels compared to ground truth annotations.

We explicitly introduce zero-code regularisation term to avoid this:

$$
r_{s}=r_{s}^{\prime}+\lambda\left(\left\|\boldsymbol{c}_{\boldsymbol{s}_{\boldsymbol{A}}}\right\|_{2}^{2}+\left\|\boldsymbol{c}_{\boldsymbol{s}_{B}}\right\|_{2}^{2}\right)
$$

SceneGode-Multiview Semantic Label Fusion

W/zero-code prior

Input Image

GT Label
Opt. Label
Sem. Error
Entropy

dyson Imperial College
Robotics Lab

SceneCode-Multiview Semantic Lahel Fusion

W/O zero-code prior
Input Image GT Label Opt. Label Sem. Error Entropy

dyson Imperial College
Robotics Lab

Motivation | SceneCode | Semantic-NeRF | Conclusion

Monocular Dense Semantic SLAM

Motivation | SceneCode | Semantic-NeRF | Conclusion

Monocular Dense Semantic SLAM

Two-frame SfM

dyson Imperial College
Robotics Lab London

Motivation | SceneCode | Semantic-NeRF | Conclusion

Monocular Dense Semantic SLAM

Key-frame based Monocular SLAM

Semantic Structure from Motion

Motivation | SceneCode | Semantic-NeRF | Conclusion

Existing Semantic Scene Representations

SemanticFusion [McCormac et al. 2017]

Semantically Fused Dense Reconstruction

Neural Radiance Fields (NeRF)

NeRF use MLPs to represent the 3D scene, which can be treated as a continuous volumetric representation.

Neural Radiance Fields (NeRF):

Encode scenes as a mapping on the 5^{D} manifold of 3 D positions and viewing directions.

NeRF computes the colour of a single pixel $\underline{\boldsymbol{C}(\boldsymbol{r}) \text { using volume rendering : }}$

$$
\hat{\mathbf{C}}(\mathbf{r})=\sum_{k=1}^{K} \hat{T}\left(t_{k}\right) \alpha\left(\sigma\left(t_{k}\right) \delta_{k}\right) \mathbf{c}\left(t_{k}\right), \text { where } \hat{T}\left(t_{k}\right)=\exp \left(-\sum_{k^{\prime}=1}^{k-1} \sigma\left(t_{k}\right) \delta_{k}\right)
$$

Semantic-NeRF

In-Place Scene Labelling and Understanding with Implicit Scene Representation

Denoise

dyson Imperial College
Robotics Lab

Semantic-NeRF

Why Semantic-NeRF:

- Most existing semantic representations relied on geometric ones.
- Semantic labelling is highly correlated with radiance and geometry
- Supervised semantic representation requires expensive annotation and shows unsatisfying generalisation in unseen or open-set environments.

Semantic-NeRF Set-up

Without any prior training, Semantic-NeRF is a scene-specific representation learned with only in-place annotat

- Multi-view RGB Images with camera poses
- Semantic Annotations
- Dense Labels
- Sparse Labels
- Noisy Labels
- Coarse Labels
- Imperfect Labels

Semantic-NeRF Network Architecture

Motivation | SceneCode | Semantic-NeRF | Conclusion

Volume Rendering of Colour and Semantics:

$$
\mathbf{c}=F_{\Theta}(\mathbf{x}, \mathbf{d}), \quad \mathbf{s}=F_{\Theta}(\mathbf{x})
$$

Colour:

$$
\hat{\mathrm{C}}(\mathbf{r})=\sum_{k=1}^{K} w_{i} C_{i}, \quad w_{i}=T_{i}\left(1-\exp \left(-\sigma_{i} \delta_{i}\right)\right)^{\prime}
$$

$$
\hat{\mathbf{S}}(\mathbf{r})=\sum_{k=1}^{K} w_{i} \Im_{i}, \quad w_{i}=T_{i}\left(1-\exp \left(-\sigma_{i} \delta_{i}\right)\right)
$$

Semantic-NeRF can fuse various types of annotations via training, leading to accurate dense labels.

Applications of Semantic-NeRF

- Semantic View Synthesis with Sparse Labels
- Semantic Label Denoising
- Semantic Label Super-Resolution
- Semantic Label Propagation
- Multi-view Semantic Fusion
- Semantic 3D Reconstruction using Posed Images

Semantic View Synthesis with Sparse Lahels

Ground Truth

Rendering
Entropy

Motivation | SceneCode | Semantic-NeRF | Conclusion

Pixel-Wise Lahel Denoising

Within each block, from left to right are: noisy training labels, denoised labels and entropy.

Motivation | SceneCode | Semantic-NeRF | Conclusion Pixel-Wise Lahel Denoising

Motivation | SceneCode | Semantic-NeRF | Conclusion

Region-Wise Lahel Denoising

Motivation | SceneCode | Semantic-NeRF | Conclusion

Semantic Lahel Super-Resolution

Robotics L'

Semantic Label Propagation

Single-click per class/frame

Partial Label

Propagated Label

Multi-view Semantic Fusion

Can Semantic-NeRF improve monocular CNN predictions?

Semantic Fusion	mIoU	Avg Acc	Total Acc
Monocular	0.659	0.763	0.855
Bayesian Fusion *	0.668	0.764	0.865
Average Fusion *	0.586	0.703	0.814
Bayesian Fusion \dagger	0.666	0.761	0.862
Average Fusion \dagger	0.586	0.708	0.808
NeRF-Training (Ours)	0.680	0.772	0.870

[^0]Motivation | SceneCode | Semantic-NeRF | Conclusion

Semantic 3D Reconstruction using Posed Images

Conclusion

- We have presented several methods to learn semantic scene representations using either external or in-place supervision.
- A monocular semantic mapping system and an online interactive scene understanding system are built on top of proposed representations.
- Better methods to describe intrinsic semantic error and higher efficiency of NeRF-like models are required to improve their practicability in real-world applications.
- Enabling mutual benefits of geometry and semantics is a promising direction.

Thanks!

[^0]: Using ground truth depth for data association.
 ${ }^{\dagger}$ Using learned depth of Semantic-NeRF for data association.

