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Scene Representations in vSLAM

• Scene representation concerns the environmental attributes that can be captured in a 
SLAM system’s world model.

• Scene representations in vSLAM have gradually progressed from sparse point sets to 
dense geometric 3D maps and more recently to neural representations.
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DNNs
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Classical Geometric Scene Representation 
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Point Cloud Voxel Mesh Signed Distance Field

Explicit Implicit
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Neural Scene Representation
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Explicit Representation
- GQN [Eslami et al. 2018]
- CodeSLAM [Bloesch et al. 2018]
- SceneCode [Zhi et al. 2019]
- DeepVoxels [Sitzmann et al. 2019]
- Neural Volumes [Lombardi et al 2019]
- Latent Fusion [Park, et al. 2020]

Implicit Representation
- SRN [Sitzmann etal. 2019]
- DeepSDF [Park et al. 2019]
- PIFu [Shunsuke et al. 2019]
- CON [Mescheder et al. 2020]
- NeRF [Mildenhall et al. 2020]
- NeRF Explosion…

RefineNet

RefineNet
RefineNet

RefineNet
RefineNet

RefineNet

RefineNet
RefineNet

Concat&Multiply

Concat&Multiply



Robotics Lab

Neural Scene Representation
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Explicit Representation
- GQN [Eslami et al. 2018]
- CodeSLAM [Bloesch et al. 2018]
- SceneCode [Zhi et al. 2019]
- DeepVoxels [Sitzmann et al. 2019]
- Neural Volumes [Lombardi et al 2019]
- Latent Fusion [Park, et al. 2020]
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Neural Scene Representation

6

Motivation | SceneCode | Semantic-NeRF | Conclusion

Implicit Representation
- SRN [Sitzmann etal. 2019]
- DeepSDF [Park et al. 2019]
- PIFu [Shunsuke et al. 2019]
- CON [Mescheder et al. 2020]
- NeRF [Mildenhall et al. 2020]
- NeRF Explosion…
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Existing Semantic Scene Representations
SceneCode [Zhi et al. 2019]

Fusion via Learning

Label Denoising Super-Resolution

Label Propagation Label Synthesis

Label Interpolation

Semantic-NeRF [Zhi et al. 2021]

II. RELATED WORK

The works most closely related are Stückler et al. [23] and
Hermans et al. [8]; both aim towards a dense, semantically
annotated 3D map of indoor scenes. They both obtain per-
pixel label predictions for incoming frames using Random
Decision Forests, whereas ours exploits recent advances in
Convolutional Neural Networks that provide state-of-the-art
accuracy, with a real-time capable run-time performance.
They both fuse predictions from different viewpoints in a
classic Bayesian framework. Stückler et al. [23] used a
Multi-Resolution Surfel Map-based SLAM system capable
of operating at 12.8Hz, however unlike our system they
do not maintain a single global semantic map as local key
frames store aggregated semantic information and these are
subject to graph optimisation in each frame. Hermans et
al. [8] did not use the capability of a full SLAM system with
explicit loop closure: they registered the predictions in the
reference frames using only camera tracking. Their run-time
performance was 4.6Hz, which would prohibit processing a
live video feed, whereas our system is capable of operating
online and interactively. As here, they regularised their pre-
dictions using Krähenbühl and Koltun’s [13] fully-connected
CRF inference scheme to obtain a final semantic map.

Previous work by Salas-Moreno et al. aimed to create a
fully capable SLAM system, SLAM++ [19], which maps
indoor scenes at the level of semantically defined objects.
However, their method is limited to mapping objects that are
present in a pre-defined database. It also does not provide the
dense labelling of entire scenes that we aim for in this work,
which also includes walls, floors, doors, and windows which
are equally important to describe the extent of the room.
Additionally, the features they use to match template models
are hand-crafted unlike our CNN features that are learned in
an end-to-end fashion with large training datasets.

The majority of other approaches to indoor semantic la-
belling either focuses on offline batch mapping methods [24],
[12] or on single-frame 2D segmentations which do not
aim to produce a semantically annotated 3D map [3], [20],
[15], [22]. Valentin et al. [24] used a CRF and a per-
pixel labelling from a variant of TextonBoost to reconstruct
semantic maps of both indoor and outdoor scenes. This
produces a globally consistent 3D map, however inference is
performed on the whole mesh once instead of incrementally
fusing the predictions online. Koppula et al. [12] also tackle
the problem on a completed 3D map, forming segments of
the map into nodes of a graphical model and using hand-
crafted geometric and visual features as edge potentials to
infer the final semantic labelling.

Our semantic mapping pipeline is inspired by the re-
cent success of Convolution Neural Networks in semantic
labelling and segmentation tasks [14], [16], [17]. CNNs
have proven capable of both state-of-the-art accuracy and
efficient test-time performance. They have have exhibited
these capabilities on numerous datasets and a variety of data
modalities, in particular RGB [17], [16], Depth [1], [7] and
Normals [2], [4], [6], [5]. In this work we build on the CNN

Fig. 2: An overview of our pipeline: Input images are used
to produce a SLAM map, and a set of probability prediction
maps (here only four are shown). These maps are fused into
the final dense semantic map via Bayesian updates.

model proposed by Noh et. al. [17], but modify it to take
advantage of the directly available depth data in a manner
that does not require significant additional pre-processing.

III. METHOD

Our SemanticFusion pipeline is composed of three sepa-
rate units; a real-time SLAM system ElasticFusion, a Con-
volutional Neural Network, and a Bayesian update scheme,
as illustrated in Figure 2. The role of the SLAM system is
to provide correspondences between frames, and a globally
consistent map of fused surfels. Separately, the CNN receives
a 2D image (for our architecture this is RGBD, for Eigen et
al. [2] it also includes estimated normals), and returns a set
of per pixel class probabilities. Finally, a Bayesian update
scheme keeps track of the class probability distribution for
each surfel, and uses the correspondences provided by the
SLAM system to update those probabilities based on the
CNN’s predictions. Finally, we also experiment with a CRF
regularisation scheme to use the geometry of the map itself
to improve the semantic predictions [8], [13]. The following
section outlines each of these components in more detail.

A. SLAM Mapping

We choose ElasticFusion as our SLAM system.1 For each
arriving frame, k, ElasticFusion tracks the camera pose
via a combined ICP and RGB alignment, to yield a new
pose TWC , where W denotes the World frame and C the
camera frame. New surfels are added into our map using this
camera pose, and existing surfel information is combined
with new evidence to refine their positions, normals, and

1Available on https://github.com/mp3guy/ElasticFusion

SemanticFusion [McCormac et al. 2017]
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Existing Semantic Scene Representations
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SemanticFusion

In many semantic mapping systems,
• mature geometric SLAM systems are used and their semantic representation 

relies on the geometric one.
• 3D dense map elements are associated with 2D/3D semantic predictions.
• semantics of each map element is individually processed.



Robotics Lab

Motivation | SceneCode | Semantic-NeRF | iLabel | Conclusion

Existing Semantic Scene Representations
SceneCode [Zhi et al. 2019]
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If dense geometry can be represented by a compact code, 
how about dense semantic labelling?



Robotics Lab

Motivation | SceneCode | Semantic-NeRF | Conclusion

SceneCode

Code
Optimisation

• Introduce a compact and optimisable semantic representation using an image-
conditioned variational auto-encoder.

• Propose a new multi-view semantic label fusion method maximising semantic consistency.

• Build a monocular dense semantic 3D reconstruction system, where geometry and semantics 
are tightly coupled into a joint optimisation framework.
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Network-Training Time

• Compact and optimisable code representations of depth and semantics via a CVAE.
• Allow inference-time refinement via photometric and semantic costs.
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Network-Test Time

RefineNet

RefineNet
RefineNet

RefineNet
RefineNet

RefineNet

RefineNet
RefineNet

Concat&Multiply

Concat&Multiply

Semantic Code

Depth Code

• Full-zero codes are used for both initialisation and monocular predictions.
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RefineNet
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Linear Conv

Linear Conv

Concat&Multiply

Concat&Multiply

D(cd, I) = D0(I) + Jd(I)cd

S(cs, I) = S0(I) + Js(I)cs
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A linear VAE-decoder after the ‘Concat &Multiply’ operation makes the output 
non-linear w.r.t. input colour images while linear w.r.t. latent codes.  

• 𝐽!/# is the learned linear Jacobians

• 𝑐# and 𝑐$ are code-representations of depth and semantic
• 𝐷% and S% are monocular predictions with full-zero codes, i.e., 

𝐷% 𝐼 = 𝐷 0, 𝐼 , 𝑆% 𝐼 = 𝑆 0, 𝐼

Motivation | SceneCode | Semantic-NeRF | Conclusion

Why Linear Decoder?
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What  Has Been Learned by Semantic Code Representations?
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Multi-view Fusion via Code-optimisation
Dense Geometry Refinement
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Depth code can be refined by minimising both photometric error 𝐫𝐢
and geometric error 𝐫𝒛 :

Motivation | SceneCode | Semantic-NeRF | Conclusion
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Multi-view Fusion via Code-optimisation
Dense Semantics Refinement

Motivation | SceneCode | Semantic-NeRF | Conclusion
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However, simply maximising semantic consistency has trivial solutions, e.g., 
wrong but consistent labels compared to ground truth annotations.

We explicitly introduce zero-code regularisation term to avoid this:

rs = r
0

s + �
⇣
kcsAk

2
2 + kcsBk22

⌘
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SceneCode-Multiview Semantic Label Fusion

Input Image GT Label Opt. Label Sem. Error Entropy

W/ zero-code prior
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SceneCode-Multiview Semantic Label Fusion

Input Image GT Label Opt. Label Sem. Error Entropy

W/O zero-code prior
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Monocular Dense Semantic SLAM
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Monocular Dense Semantic SLAM
Two-frame SfM
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Monocular Dense Semantic SLAM
Key-frame based Monocular SLAM
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SceneCode
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Existing Semantic Scene Representations

Semantic-NeRF [Zhi et al. 2021]



Neural Radiance Fields (NeRF)

NeRF use MLPs to represent the 3D scene, which can be 
treated as a continuous volumetric representation.

Motivation | SceneCode | Semantic-NeRF | Conclusion



Neural Radiance Fields (NeRF):

Encode scenes as a mapping on the 5D manifold of 3D 
positions and viewing directions.
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神经辐射场 NeRF-Volume Rendering
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NeRF computes the colour of a single pixel 𝑪 𝒓 using volume rendering :
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Semantic-NeRF

In-Place Scene Labelling and Understanding with Implicit Scene Representation
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Semantic-NeRF

• Most existing semantic representations relied on geometric ones.
• Semantic labelling is highly correlated with radiance and geometry
• Supervised semantic representation requires expensive annotation 

and shows unsatisfying generalisation in unseen or open-set 
environments.

Why Semantic-NeRF:



Semantic-NeRF Set-up 
Without any prior training, Semantic-NeRF is a scene-specific 
representation learned with only in-place annotations:

• Multi-view RGB Images with camera poses
• Semantic Annotations
• Dense Labels
• Sparse Labels
• Noisy Labels
• Coarse Labels
• Imperfect Labels

Motivation | SceneCode | Semantic-NeRF | Conclusion



Semantic-NeRF Network Architecture
Volume Density (!)
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Volume Rendering of Colour and Semantics:

Colour!

Semantic!
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Fusion via Learning

Label Denoising Super-Resolution

Label Propagation Label Synthesis

Label Interpolation

Semantic-NeRF can fuse various types of annotations via training, leading 
to accurate dense labels.



Applications of Semantic-NeRF

• Semantic View Synthesis with Sparse Labels

• Semantic Label Denoising

• Semantic Label Super-Resolution

• Semantic Label Propagation

• Multi-view Semantic Fusion

• Semantic 3D Reconstruction using Posed Images

Motivation | SceneCode | Semantic-NeRF | Conclusion
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Semantic View Synthesis with Sparse Labels



Within each block, from left to right are:
noisy training labels, denoised labels and entropy.
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Pixel-Wise Label Denoising
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Pixel-Wise Label Denoising
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Region-Wise Label Denoising
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Semantic Label Super-Resolution
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Semantic Label Propagation
Single-click per class/frame



Can Semantic-NeRF improve monocular CNN predictions?
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Multi-view Semantic Fusion
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Semantic 3D Reconstruction using Posed Images



Robotics Lab

Conclusion

• We have presented several methods to learn semantic scene representations 
using either external or in-place supervision.

• A monocular semantic mapping system and an online interactive scene 
understanding system are built on top of proposed representations.

• Better methods to describe intrinsic semantic error and higher efficiency of 
NeRF-like models are required to improve their practicability in real-world 
applications.

• Enabling mutual benefits of geometry and semantics is a promising direction.
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Thanks!

51


