dysonImperial CollegeRobotics LabLondon

Semantic Neural Representation for Scene Understanding

Shuaifeng Zhi 4th -year PhD Student Dyson Robotics Lab at Imperial College London

GAMES Webinar 21st October 2021

Motivation | SceneCode | Semantic-NeRF | Conclusion Scene Representations in vSLAM

- Scene representation concerns the environmental attributes that can be captured in a SLAM system's world model.
- Scene representations in vSLAM have gradually progressed from <u>sparse point sets</u> to <u>dense geometric 3D maps</u> and more recently to <u>neural representations</u>.

Classical Geometric Scene Representation

Neural Scene Representation

Explicit Representation

- GQN [Eslami et al. 2018]
- CodeSLAM [Bloesch et al. 2018]
- SceneCode [Zhi et al. 2019]
- DeepVoxels [Sitzmann et al. 2019]
- Neural Volumes [Lombardi et al 2019]
- Latent Fusion [Park, et al. 2020]

Implicit Representation

- SRN [Sitzmann etal. 2019]
- DeepSDF [Park et al. 2019]
- PIFu [Shunsuke et al. 2019]
- CON [Mescheder et al. 2020]
- NeRF [Mildenhall et al. 2020]
- NeRF Explosion...

Neural Scene Representation

Explicit Representation

- GQN [Eslami et al. 2018]
- CodeSLAM [Bloesch et al. 2018]
- SceneCode [Zhi et al. 2019]
- DeepVoxels [Sitzmann et al. 2019]
- Neural Volumes [Lombardi et al 2019]
- Latent Fusion [Park, et al. 2020]

Implicit Representation

- SRN [Sitzmann etal. 2019]
- DeepSDF [Park et al. 2019]
- PIFu [Shunsuke et al. 2019]
- CON [Mescheder et al. 2020]
- NeRF [Mildenhall et al. 2020]
- NeRF Explosion...

Motivation | SceneCode | Semantic-NeRF | Conclusion
Neural Scene Representation

Explicit Representation

- GQN [Eslami et al. 2018]
- CodeSLAM [Bloesch et al. 2018]
- SceneCode [Zhi et al. 2019]
- DeepVoxels [Sitzmann et al. 2019]
- Neural Volumes [Lombardi et al 2019]
- Latent Fusion [Park, et al. 2020]

Implicit Representation

- SRN [Sitzmann etal. 2019]
- DeepSDF [Park et al. 2019]
- PIFu [Shunsuke et al. 2019]
- CON [Mescheder et al. 2020]
- NeRF [Mildenhall et al. 2020]
- NeRF Explosion...

Existing Semantic Scene Representations

dyson Imperial College

London

Robotics Lab

Existing Semantic Scene Representations

dyson Imperial College

London

Robotics Lab

SemanticFusion

In many semantic mapping systems,

- mature geometric SLAM systems are used and their semantic representation relies on the geometric one.
- 3D dense map elements are associated with 2D/3D semantic predictions.
- semantics of each map element is individually processed.

Existing Semantic Scene Representations

dyson Imperial College

London

Robotics Lab

If dense geometry can be represented by a compact code, how about dense semantic labelling?

SceneCode

- Introduce a compact and optimisable semantic representation using an imageconditioned variational auto-encoder.
- Propose a new multi-view semantic label fusion method maximising semantic consistency.
- Build a monocular dense semantic 3D reconstruction system, where geometry and semantics are tightly coupled into a joint optimisation framework.

- Compact and optimisable code representations of depth and semantics via a CVAE.
- Allow inference-time refinement via photometric and semantic costs.

Network-Test Time

• Full-zero codes are used for both initialisation and monocular predictions.

Why Linear Decoder?

Robotics Lab

Londor

A linear VAE-decoder after the 'Concat & Multiply' operation makes the output non-linear w.r.t. input colour images while linear w.r.t. latent codes.

$$D(c_d, I) = D_0(I) + J_d(I)c_d$$
$$S(c_s, I) = S_0(I) + J_s(I)c_s$$

- $J_{s/d}$ is the learned linear Jacobians
- c_d and c_s are code-representations of depth and semantic
- D_0 and S_0 are monocular predictions with full-zero codes, i.e., $D_0(I) = D(0, I), S_0(I) = S(0, I)$ dyson Imperial College

What Has Been Learned by Semantic Code Representations?

Visualisation of Semantic Code-Jacobians

Exploring the Latent Space

Multi-view Fusion via Code-optimisation

Dense Geometry Refinement

Depth code can be refined by minimising both photometric error r_i and geometric error r_z :

$$r_{i} = I_{A} \left[\boldsymbol{u}_{A} \right] - I_{B} \left[w \left(\boldsymbol{u}_{A}, \boldsymbol{c}_{d}^{A}, \boldsymbol{T}_{BA} \right) \right]$$

$$r_z = D_B[w(\boldsymbol{u}_A, \boldsymbol{c}_d^A, \boldsymbol{T}_{BA})] - [\boldsymbol{T}_{BA}\pi^{-1}(\boldsymbol{u}_A, D_A[\boldsymbol{u}_A])]_Z$$

Multi-view Fusion via Code-optimisation

Dense Semantics Refinement

$$r'_{s} = DS\left(S_{A}\left[\mathbf{u}_{A}\right], S_{B}\left[w\left(\mathbf{u}_{A}, \boldsymbol{c}_{d}^{A}, \boldsymbol{T}_{BA}\right)\right]\right)$$

However, simply maximising semantic consistency has trivial solutions, e.g., wrong but consistent labels compared to ground truth annotations.

We explicitly introduce *zero-code regularisation* term to avoid this:

$$r_{s} = r_{s}^{'} + \lambda \left(\| \boldsymbol{c_{s_{A}}} \|_{2}^{2} + \| \boldsymbol{c_{s_{B}}} \|_{2}^{2} \right)$$

SceneCode-Multiview Semantic Label Fusion

W/zero-code prior

SceneCode-Multiview Semantic Label Fusion

W/O zero-code prior

dyson Imperial Robotics Lab London

Monocular Dense Semantic SLAM

Two-frame SfM

Monocular Dense Semantic SLAM

Key-frame based Monocular SLAM

Semantic Structure from Motion

Existing Semantic Scene Representations

Neural Radiance Fields (NeRF)

NeRF use MLPs to represent the 3D scene, which can be treated as a continuous volumetric representation.

Neural Radiance Fields (NeRF):

Encode scenes as a mapping on the 5D manifold of 3D positions and viewing directions.

NeRF computes the colour of a single pixel $\underline{C(r)}$ using volume rendering :

$$\hat{\mathbf{C}}(\mathbf{r}) = \sum_{k=1}^{K} \hat{T}(t_k) \, \alpha \left(\sigma(t_k) \delta_k \right) \mathbf{c}(t_k), \text{ where } \hat{T}(t_k) = \exp\left(-\sum_{k'=1}^{k-1} \sigma(t_k) \delta_k\right)$$

In-Place Scene Labelling and Understanding with Implicit Scene Representation

Semantic-NeRF

Why Semantic-NeRF:

- Most existing semantic representations relied on geometric ones.
- Semantic labelling is highly correlated with radiance and geometry
- Supervised semantic representation requires expensive annotation and shows unsatisfying generalisation in unseen or open-set environments.

Semantic-NeRF Set-up

Without any prior training, Semantic-NeRF is a scene-specific representation learned with only in-place annotations.

- Multi-view RGB Images with camera poses
- Semantic Annotations
 - Dense Labels
 - Sparse Labels
 - Noisy Labels
 - Coarse Labels
 - Imperfect Labels

Semantic-NeRF Network Architecture

Volume Rendering of Colour and Semantics:

 $\mathbf{c} = F_{\Theta}(\mathbf{x}, \mathbf{d}), \quad \mathbf{s} = F_{\Theta}(\mathbf{x})$

Colour:

Semantic:

Semantic-NeRF can fuse various types of annotations via training, leading to accurate dense labels.

Applications of Semantic-NeRF

- Semantic View Synthesis with Sparse Labels
- Semantic Label Denoising
- Semantic Label Super-Resolution
- Semantic Label Propagation
- Multi-view Semantic Fusion
- Semantic 3D Reconstruction using Posed Images

Semantic View Synthesis with Sparse Labels

Ground Truth

Rendering

Entropy

Pixel-Wise Label Denoising

Within each block, from left to right are: noisy training labels, denoised labels and entropy.

Pixel-Wise Label Denoising

Region-Wise Label Denoising

Semantic Label Super-Resolution

Robotics L

Semantic Label Propagation

Single-click per class/frame

Partial Label

Propagated Label

Multi-view Semantic Fusion

Can Semantic-NeRF improve monocular CNN predictions?

Semantic Fusion	mIoU	Avg Acc	Total Acc
Monocular	0.659	0.763	0.855
Bayesian Fusion *	0.668	0.764	0.865
Average Fusion *	0.586	0.703	0.814
Bayesian Fusion †	0.666	0.761	0.862
Average Fusion †	0.586	0.708	0.808
NeRF-Training (Ours)	0.680	0.772	0.870

^{*} Using ground truth depth for data association.
 [†] Using learned depth of Semantic-NeRF for data association.

Semantic 3D Reconstruction using Posed Images

Conclusion

- We have presented several methods to learn semantic scene representations using either external or in-place supervision.
- A monocular semantic mapping system and an online interactive scene understanding system are built on top of proposed representations.
- Better methods to describe intrinsic semantic error and higher efficiency of NeRF-like models are required to improve their practicability in real-world applications.
- Enabling mutual benefits of geometry and semantics is a promising direction.

Thanks!

