

VOLUMETRIC APPEARANCE STYLIZATION WITH STYLIZING KERNEL PREDICTION NETWORK

Jie Guo ¹ Jingwu He ¹ Mengtian Li ^{1,2} Yanwen Guo ¹

Zijing Zong ¹ Ling-Qi Yan ³

¹ State Key Lab for Novel Software Technology, Nanjing University

² Kuaishou Technology

³ University of California, Santa Barbara

Yuntao Liu¹

- Simulating the visual effects of heterogeneous media in CG requires a set of material properties:
 - Phase function analytical model, e.g., the Henyey-Greenstein model
 - Density field physically-based fluid simulations
 - Albedo field relatively difficult to edit
- Our goal artistically control the appearance of a medium according to only one guided image

Method	Objective	Iterative Optimization	Performance
LazyFluid [Jamriška et al. 2015]	2D image	\checkmark	≈60s CPU
PhotoWCT [Li et al. 2018]	2D image	×	≈1s GPU
Tomography [Klehm et al. 2014]	3D density + albedo	\checkmark	≈1s GPU
TNST [Kim et al. 2019]	3D density	\checkmark	≥60s GPU
LNST [Kim et al. 2020]	3D density + 2D albedo	\checkmark	≈5s GPU

- ✓ Trained in unsupervised manner
- ✓ Support arbitrary style transfer
- ✓ Support both static and dynamic volumes
- ✓ Fast to evaluate (less than one second)

- Key components
 - Stylizing kernel & Its predictor
 - Volume autoencoder & Density-aware instance normalization
 - Volume rendering layer

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

Instance Normalization

 $\begin{array}{c} \hline \\ \mu = 0.0082 \\ \sigma^2 = 0.0075 \end{array} \begin{array}{c} \mu = 0.0113 \\ \sigma^2 = 0.0092 \end{array} \begin{array}{c} \mu = 0.0149 \\ \sigma^2 = 0.0104 \end{array} \begin{array}{c} \mu = 0.0149 \\ \sigma^2 = 0.0104 \end{array} \begin{array}{c} \mu = 0.0192 \\ \sigma^2 = 0.0111 \end{array} \begin{array}{c} \mu = 0.0241 \\ \sigma^2 = 0.0119 \end{array}$

The distribution of density usually varies considerably in the process of smoke simulation

Influence the computation of the mean and variance used in standard

DENSITY-AWARE INSTANCE NORMALIZATION

THE PREMIER **CONFERENCE** & **EXHIBITION** IN COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

→ DENSITY-AWARE INSTANCE NORMALIZATION

Obtain a smoothing density mask

$$\mathbf{m} = 1 - \exp(-\lambda \mathbf{V}_{\sigma}^2)$$

Normalize with weighted mean and variance

$$\mu_{c} = \frac{1}{\sum_{i,j,k} \mathbf{m}_{i,j,k}} \sum_{i}^{D} \sum_{j}^{H} \sum_{k}^{W} \mathcal{F}_{c,i,j,k} \cdot \mathbf{m}_{i,j,k}$$

$$\sigma_{c}^{2} = \frac{1}{\sum_{i,j,k} \mathbf{m}_{i,j,k}} \sum_{i}^{D} \sum_{j}^{H} \sum_{k}^{W} (\mathcal{F}_{c,i,j,k} - \mu_{c})^{2} \cdot \mathbf{m}_{i,j,k}$$

→ STYLIZING KERNEL

- Consist of an adaptive Conv3d and an adaptive DAIN
- Inject style information across different feature channels

→ STYLIZING KERNEL

Comparison on the number and size of stylizing kernel

→ VOLUME RENDERING LAYER

The Radiative Transfer Equation

- Assumptions
 - Isotropic phase function
 - Constant environmental light
 - Single scattering
 - > Under these assumptions, the volume rendering layer is to evaluate $L(\mathbf{x}, \boldsymbol{\omega}) = \int_0^t Tr(\mathbf{x}_t \to \mathbf{x}) \sigma_t(\mathbf{x}_t) \alpha(\mathbf{x}_t) L_s(\mathbf{x}_t) dt \qquad Tr(\mathbf{x}_t \to \mathbf{x}) \underbrace{r_t(\mathbf{x}_t \to \mathbf{x}) \sigma_t(\mathbf{x}_t) \alpha(\mathbf{x}_t) L_s(\mathbf{x}_t) dt}_{\text{Precomputed}}$
 - Forward render via ray marching

$$L(\mathbf{x}, \boldsymbol{\omega}) = \sum_{i=1}^{N} \exp\left\{-\sum_{j=1}^{i} \sigma_{t}(\mathbf{x}_{j})\Delta t\right\} \sigma_{t}(\mathbf{x}_{i})\alpha(\mathbf{x}_{i})L_{s}(\mathbf{x}_{i})\Delta t$$

→ VOLUME RENDERING LAYER

DTRT, 1 spp, 7.5 ms

Ours, 1 spp, **0.3 ms**

Hist Gram + Hist Mean-std

Choice of style loss

→ LOSS FUNCTION

- Gram matrix, Histogram
- Histogram + Gram matrix
- Mean-std

→ LOSS FUNCTION

- Total variation loss
 - Encourage spatial smoothness in the generated albedo volume ٠

$$\mathcal{L}_{\text{tv}}(\mathbf{V}_{\alpha}) = \|\nabla_{x}\mathbf{V}_{\alpha}\|_{2}^{2} + \|\nabla_{y}\mathbf{V}_{\alpha}\|_{2}^{2} + \|\nabla_{z}\mathbf{V}_{\alpha}\|_{2}^{2}$$

- \triangleright Temporal loss
 - Penalize the inconsistencies between stylized volumes of two consecutive frames ullet

$$\mathcal{L}_{\text{temp}}(\mathbf{V}_{\alpha}, \mathbf{V}_{\alpha}') = \|\mathbf{V}_{\alpha} - \mathcal{W}(\mathbf{V}_{\alpha}', \mathbf{U})\|_{2}^{2}$$

velocity L2 loss field Frame' i Frame i+1 Frame i

THE PREMIER CONFERENCE & EXHIBITION IN

COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

- > 3k density volumes and velocity fields generated with *mantaflow*
- > 3k style images from DTD dataset [Cimpoi et al.]

→ COMPARISON WITH PREVIOUS METHODS

> We compare our method to

- PhotoWCT [Li et al.] a recent image style transfer method that is able to process arbitrary new style
- LazyFluid [Jamriška et al.] a 2D patch-based approach to appearance transfer for fluid animations
- Tomography [Klehm et al.] a tomographic reconstruction method for volumetric appearance stylization

→ COMPARISON WITH PREVIOUS METHODS

→ COMPARISON WITH PREVIOUS METHODS

Image Style Transfer

Tomography

SKPN (Ours)

→ HALLUCINATING TRANSLUCENT MATERIALS

→ CONCLUSION AND FUTURE WORK

Conclusion

- We propose the first feed-forward neural network that enables efficient artistic volumetric appearance stylization
- > Limitations
 - Tiny details can not be well captured
 - Can not guarantee consistency between color and structural features if adopt SKPN and TNST independently to stylize both density and albedo

THANK YOU !

Q&A

