

PATH-SPACE DIFFERENTIABLE RENDERING OF PARTICIPATING MEDIA

CHENG ZHANG^{*}, ZIHAN YU^{*}, AND SHUANG ZHAO

UNIVERSITY OF CALIFORNIA, IRVINE, USA

(*: EQUAL CONTRIBUTION)

WHY WE NEED DIFFERENTIABLE RENDERING?

- Inverse rendering
 - Enabling gradient-based optimization

- Machine learning
 - Incorporating light transport simulation
 - Backpropagation through rendering

PRIOR WORK IN DIFFERENTIABLE RENDERING

Surface-only frameworks

Cannot handle volumetric light transport

A differential theory of radiative transfer (DTRT) [Zhang et al. 2019]

Cannot handle complex light transport effects (BDPT) Cannot handle complex geometries

OUR CONTRIBUTIONS

Generalized differential path integral

Monte Carlo estimators

Complex geometry Complex light transport

PREVIEW OF OUR RESULTS

PREVIEW OF OUR RESULTS

THE PREMIER CONFERENCE & EXHIBITION IN COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

PRELIMINARIES

ON PATH-SPACE DIFFERENTIABLE RENDERING

PATH INTEGRAL

- Introduced by Veach [1997]
- Foundation of sophisticated Monte Carlo algorithms (e.g., BDPT, MCMC rendering)

Light path $\overline{x} = (\cdots, x_{i-1}, x_i, x_{i+1}, \cdots)$

Object surfaces \mathcal{M} Path space $\Omega = \bigcup_{N=1}^{\infty} \mathcal{M}^{N+1}$

MATERIAL-FORM REPARAMETERIZATION

Path-space Differentiable Rendering (PSDR) Zhang et al. 2020

RECAP MATERIAL-FORM DIFFERENTIAL PATH INTEGRAL

Material-form differential path integral

$$\frac{\mathrm{d}I}{\mathrm{d}\theta} = \int_{\widehat{\Omega}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(f(\overline{\mathbf{x}}) \left| \frac{\mathrm{d}\mu(\overline{\mathbf{x}})}{\mathrm{d}\mu(\overline{\mathbf{p}})} \right| \right) \mathrm{d}\mu(\overline{\mathbf{p}}) + \int_{\partial\widehat{\Omega}} g(\overline{\mathbf{p}}) \mathrm{d}\dot{\mu}(\overline{\mathbf{p}})$$

Interior integral

Boundary Integral

- Similar to the ordinary path integral
 - Integrate over the material path space
 - Differentiated integrand

Path-space Differentiable Rendering (PSDR) Zhang et al. 2020

MATERIAL-FORM DIFFERENTIAL PATH INTEGRAL

 x_1 lies on the visibility boundary with respect to x_2

Material-form differential path integral

$$\frac{\mathrm{d}I}{\mathrm{d}\theta} = \int_{\widehat{\Omega}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(f(\overline{\mathbf{x}}) \left| \frac{\mathrm{d}\mu(\overline{\mathbf{x}})}{\mathrm{d}\mu(\overline{\mathbf{p}})} \right| \right) \mathrm{d}\mu(\overline{\mathbf{p}}) + \int_{\partial\widehat{\Omega}} g(\overline{\mathbf{p}}) \mathrm{d}\dot{\mu}(\overline{\mathbf{p}})$$

Boundary Integral

- Different from the ordinary path integral
 - Integrate over boundary path space
 - Unique to differentiable rendering
 - Exactly one boundary segment

Path-space Differentiable Rendering (PSDR) Zhang et al. 2020 **SUMMARY**

Path integral

$$I = \int_{\Omega} f(\overline{\mathbf{x}}) \, \mathrm{d}\mu(\overline{\mathbf{x}})$$

(Material-form) reparam.

Material-form path integral

$$I = \int_{\widehat{\Omega}} f(\overline{\mathbf{x}}) \left| \frac{\mathrm{d}\mu(\overline{\mathbf{x}})}{\mathrm{d}\mu(\overline{\mathbf{p}})} \right| \mathrm{d}\mu(\overline{\mathbf{p}})$$

Differentiation

Material-form differential path integral

$$\frac{\mathrm{d}I}{\mathrm{d}\theta} = \int_{\widehat{\Omega}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(f(\overline{\mathbf{x}}) \left| \frac{\mathrm{d}\mu(\overline{\mathbf{x}})}{\mathrm{d}\mu(\overline{\mathbf{p}})} \right| \right) \mathrm{d}\mu(\overline{\mathbf{p}}) + \int_{\partial\widehat{\Omega}} g(\overline{\mathbf{p}}) \mathrm{d}\dot{\mu}(\overline{\mathbf{p}})$$

OUR TECHNIQUE

OVERVIEW

Path integral

Material-form

path integral

differential

d

dł

Path integral
$$I = \int_{\Omega} f(\overline{x}) d\mu$$
 $I = \int_{\Omega} f(\overline{x}) d\mu(\overline{x})$

(Material-form) **reparam**.

We generalize this framework to fully support projections light transport

$$\begin{array}{l} \text{Material-form} \\ \text{path integral} & \int_{\widehat{\Omega}} f(\overline{x}) \left| \frac{\mathrm{d}\mu(\overline{i})}{\mathrm{d}\mu(\overline{i})} I = \int_{\widehat{\Omega}} f(\overline{x}) \left| \frac{\mathrm{d}\mu(\overline{x})}{\mathrm{d}\mu(\overline{p})} \right| \mathrm{d}\mu(\overline{p}) \end{array} \right. \\ \\ \text{Differentiation} \\ \begin{array}{l} \text{Differentiation} \\ \text{Material-form} \\ \text{differential} f(\overline{x}) \left| \frac{\mathrm{d}}{\mathrm{d}} \right| \frac{\mathrm{d}I}{\mathrm{d}\theta} = \int_{\widehat{\Omega}} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(f(\overline{x}) \left| \frac{\mathrm{d}\mu(\overline{x})}{\mathrm{d}\mu(\overline{p})} \right| \right) \mathrm{d}\mu(\overline{p}) + \int_{\partial\widehat{\Omega}} g(\overline{p}) \mathrm{d}\mu(\overline{p}) \\ \text{path integral} \end{array}$$

GENERALIZED PATH INTEGRAL

• Generalized path integral [Pauly et al. 2000]

Measurement contribution $I = \int_{\Omega} f(\overline{x}) d\mu(\overline{x})$ Path space

- Similar form as Veach's (surface-only) version
- Allows volume vertices $x \in \mathcal{V}$ (capturing subsurface scattering)

- Path space
$$\Omega = \bigcup_{N=1}^{\infty} (\mathcal{M} \cup \mathcal{V})^{N+1}$$

Surfaces Volumes

GENERALIZED (MATERIAL-FORM) **REPARAMETERIZATION**

• Both surfaces \mathcal{M} and volumes \mathcal{V} may be controlled by some θ

• The path space $\Omega = \bigcup_{N=1}^{\infty} (\mathcal{M} \cup \mathcal{V})^{N+1}$ also depends on θ

GENERALIZED (MATERIAL-FORM) **REPARAMETERIZATION**

• Both surfaces \mathcal{M} and volumes \mathcal{V} may be controlled by some θ

GENERALIZED (MATERIAL-FORM) **REPARAMETERIZATION**

MATERIAL-FORM GENERALIZED PATH INTEGRAL

MATERIAL-FORM GENERALIZED PATH INTEGRAL

GENERALIZED DIFFERENTIAL PATH INTEGRAL

Material-form generalized path integral

- Interior integral:
 - Over the same material path space as the ordinary path integral

OUTLINE

Path

Integral

Reparam.

Mat-form

PI

Diff.

Mat-form Diff. PI

GENERALIZED DIFFERENTIAL PATH INTEGRAL

Material-form generalized path integral

Differentiate

Boundary Integral

- Unique to differentiable rendering
- Over the **boundary path space**
- Exactly one **boundary segment**

BOUNDARY SEGMENT

4 types of boundary segment:

BOUNDARY INTEGRAL

OUTLINE

Path Integral

$$\frac{\mathrm{d}}{\mathrm{d}\theta}I = \int_{\widehat{\Omega}} \frac{\mathrm{d}}{\mathrm{d}\theta} \hat{f}(\overline{\boldsymbol{p}}) \mathrm{d}\mu(\overline{\boldsymbol{p}}) + \int_{\partial\widehat{\Omega}} \Delta \hat{f}(\overline{\boldsymbol{p}}) \, \nu(\boldsymbol{p}_{K}) \, \mathrm{d}\dot{\mu}(\overline{\boldsymbol{p}})$$

Boundary Integral

- Two key terms
 - $\Delta \hat{f}(\overline{p})$: Difference in $\hat{f}(\overline{p})$ across discontinuity boundaries
 - $v(\mathbf{p}_K)$: Evolution "speed" of discontinuity boundaries

DIFFERENCE OF MEASUREMENT CONTRIBUTION

EVOLUTION OF DISCONTINUITY BOUNDARIES

MONTE CARLO ESTIMATOR

ESTIMATING INTERIOR INTEGRAL

 (\overline{p})

Generalized differential path Integral

$$\frac{\mathrm{d}}{\mathrm{d}\theta}I = \int_{\widehat{\Omega}} \frac{\mathrm{d}}{\mathrm{d}\theta} \hat{f}(\overline{p}) \mathrm{d}\mu(\overline{p}) + \int_{\partial\widehat{\Omega}} \Delta \hat{f}(\overline{p}) \nu(p_K) \mathrm{d}\dot{\mu}$$

Interior Integral

Boundary Integral

- Can be estimated using identical path Different MC estimators sampling strategies as forward rendering
 - Unidirectional volumetric path tracing
 - Bidirectional volumetric path tracing

ESTIMATING BOUNDARY INTEGRAL

Generalized differential path Integral

$$\frac{\mathrm{d}}{\mathrm{d}\theta}I = \int_{\widehat{\Omega}} \frac{\mathrm{d}}{\mathrm{d}\theta} \hat{f}(\overline{\boldsymbol{p}}) \mathrm{d}\mu(\overline{\boldsymbol{p}}) + \int_{\partial\widehat{\Omega}} \Delta \hat{f}(\overline{\boldsymbol{p}}) v(\boldsymbol{p}_K) \mathrm{d}\dot{\mu}(\overline{\boldsymbol{p}})$$

Boundary Integral

- Multi-directional sampling
 - Construct boundary segment
 - Construct sensor and source subpaths

34

SAMPLING BOUNDARY SEGMENT

- To avoid explicit silhouette detection, we draw a boundary segment by
 - Sample x_B on a face edge
 - Sample ray direction ω_B
 - Sample x_1, x_2 along ω_B and $-\omega_B$

SAMPLING BOUNDARY SEGMENT

RESULTS

Ours (high sample count)

Reference (Finite difference)

Validation

Ours (low sample count)

DTRT

1.0

-1.0

Target image

- Optimize rotation angle
- Equal-time per iteration
- Identical optimization setting
 - Learning rate (Adam)
 - Initializations

RESULTS Complex light transport effect

RESULTS Complex light transport effect

Target image

- Optimize area light position
- Equal-time per iteration
- Identical optimization setting
 - Learning rate (Adam)
 - Initializations

RESULTS Joint optimization of geometry and material

Init image

lter #0

Target image

LIMITATIONS AND FUTURE WORK

- Current implementation: CPU only
 - Can not handle large number of parameters (~millions)
 - GPU implementation for real-world application
- Implicit scene geometry
 - Signed distance field (SDF)
 - Topology changes
- Primary-sample-space (PSS)

CONCLUSION

- Generalized differential path integral
 - Interfacial and volumetric light transport

- Monte Carlo methods
 - Handle interior and boundary separately
 - Complex geometry
 - Complex light transport effects (multiple scatterings, volumetric caustics)

ACKNOWLEDGEMENTS

- Anonymous reviewers
- Funding
 - Grant 1900927

Project webpage https://rb.gy/chvkme

