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• Inverse rendering
− Enabling gradient-based optimization

• Machine learning
− Incorporating light transport simulation

− Backpropagation through rendering

WHY WE NEED DIFFERENTIABLE RENDERING?

2

Scene parameters Image

Differentiable 
renderer Objective

Gradient descent

Differentiable 
renderer

Forward

Backward
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PRIOR WORK IN DIFFERENTIABLE RENDERING
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Surface-only frameworks

Li et al. 2018 Zhang et al. 2020

Loubet et al. 2019 Bangaru et. al. 2020

Cannot handle volumetric light transport

A differential theory of radiative transfer (DTRT)
[Zhang et al. 2019]

Cannot handle complex light transport effects (BDPT)
Cannot handle complex geometries

Our method addresses 
those challenges efficiently!
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OUR CONTRIBUTIONS
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Monte Carlo estimators

Generalized differential path integral

Complex geometry Complex light transport

d
d𝜃
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PREVIEW OF OUR RESULTS
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Complex geometry

Equal-time comparison
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Path-Space Di�erentiable Rendering of Participating Media • 1:11

(a) Ordinary image (b) Finite di�erences (c) Ours (high) (d) Ours (low) (e) DTRT
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Fig. 9. Di�erentiable-rendering comparisons: (a) Ordinary images. (b) Derivatives obtained using finite di�erences (in a very long time). (c, d) Derivatives
estimated using our technique with high and low sample counts, respectively. (e) Derivative estimates generated using the di�erentiable volumetric path
tracing method introduced by Zhang et al. [2019]. Results in columns (d) and (e) are computed in equal time.

number independent of � . In Eq. (45), xP, xQ, and xS0 can all be ex-
pressed as automatic-di�erentiation-enabled vectors (as discussed
in §6.1). In what follows, we discuss how xD0 and pD0 —which depend
on the scene parameter � in general—can be computed in a di�er-
entiable fashion given xB and �B. After obtaining the derivative
[dpD

0/d� ]�=�0 , we can compute the change rate �(pD0 ) using Eq. (20).

Surface case. When xD0 is a surface vertex, as illustrated in Fig-
ure 7-b1, xD0 and its derivative [dx D

0/d� ]�=�0 can be computed using
di�erentiable ray tracing:

xD0 = rayTrace(xB,�B). (46)

Then, we obtainpD0 by transformingxD0 back to the reference surface.
Assume that

xD0 = (1 � u1 � u2)xA + u1 xB + u2 xC, (47)

where: xA,xB,xC 2 M(�0) are vertices of the mesh face containing
xD0 ; (u1,u2) are barycentric coordinates of xD0 within the triangular
face. Further, xA, xB, xC, u1, and u2 are determined by the dif-
ferentiable ray tracing process and can all depend on the scene
parameter � . Given Eq. (47), it follows that

pD0 = (1 � u1 � u2)pA + u1 pB + u2 pC, (48)

where p⇤ = X�1(x⇤, �0) = detach(x⇤) for each ⇤ 2 {A, B,C}.
We note that, given Eqs. (45)–(48), we essentially parameterize

the discontinuity curve near pD0 using �1.

Volume case. When xD0 is a volume vertex, as illustrated in Fig-
ure 7-b2, it must lie on the discontinuity plane determined by xS0
and the face edge xP xQ containing xB. Assume that

xD0 = xS0 + �2 (xB � xS0), (49)

for some �2 � 1. Then, the discontinuity plane containing xD0 is
e�ectively parameterized with �1 and �2 via Eqs. (45) and (49).

When the motion X is a�ne, as discussed in §6.1, we have

pD0 = R�1
⇣
xD0 � t

⌘
. (50)

When a tetrahedral mesh is used to express X, assume that xD0 is
located inside a tetrahedron with vertices xA, xB, xC, xD 2 V(�0)
and has barycentric coordinates (u1,u2,u3). Similar to the surface
case, xA, xB, xC, xD, u1, u2, and u3 all depend on � in general. Then,
it holds that

pD0 = (1 � u1 � u2 � u3)pA + u1 pB + u2 pC + u3 pD, (51)

where p⇤ = detach(x⇤) for all ⇤ 2 {A, B,C,D}.

7 RESULTS
We implement our techniques presented in §4–§6 in C++ on the
CPU. Speci�cally, we develop a Monte Carlo estimator that samples
material light paths p̄ using unidirectional path tracing. Additionally,
we build another estimator that utilizes a bidirectional path sampling
scheme to handle challenging light transport e�ects such as caustics.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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PREVIEW OF OUR RESULTS
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Complex light transport
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Fig. 9. Di�erentiable-rendering comparisons: (a) Ordinary images. (b) Derivatives obtained using finite di�erences (in a very long time). (c, d) Derivatives
estimated using our technique with high and low sample counts, respectively. (e) Derivative estimates generated using the di�erentiable volumetric path
tracing method introduced by Zhang et al. [2019]. Results in columns (d) and (e) are computed in equal time.

number independent of � . In Eq. (45), xP, xQ, and xS0 can all be ex-
pressed as automatic-di�erentiation-enabled vectors (as discussed
in §6.1). In what follows, we discuss how xD0 and pD0 —which depend
on the scene parameter � in general—can be computed in a di�er-
entiable fashion given xB and �B. After obtaining the derivative
[dpD

0/d� ]�=�0 , we can compute the change rate �(pD0 ) using Eq. (20).

Surface case. When xD0 is a surface vertex, as illustrated in Fig-
ure 7-b1, xD0 and its derivative [dx D

0/d� ]�=�0 can be computed using
di�erentiable ray tracing:

xD0 = rayTrace(xB,�B). (46)

Then, we obtainpD0 by transformingxD0 back to the reference surface.
Assume that

xD0 = (1 � u1 � u2)xA + u1 xB + u2 xC, (47)

where: xA,xB,xC 2 M(�0) are vertices of the mesh face containing
xD0 ; (u1,u2) are barycentric coordinates of xD0 within the triangular
face. Further, xA, xB, xC, u1, and u2 are determined by the dif-
ferentiable ray tracing process and can all depend on the scene
parameter � . Given Eq. (47), it follows that

pD0 = (1 � u1 � u2)pA + u1 pB + u2 pC, (48)

where p⇤ = X�1(x⇤, �0) = detach(x⇤) for each ⇤ 2 {A, B,C}.
We note that, given Eqs. (45)–(48), we essentially parameterize

the discontinuity curve near pD0 using �1.

Volume case. When xD0 is a volume vertex, as illustrated in Fig-
ure 7-b2, it must lie on the discontinuity plane determined by xS0
and the face edge xP xQ containing xB. Assume that

xD0 = xS0 + �2 (xB � xS0), (49)

for some �2 � 1. Then, the discontinuity plane containing xD0 is
e�ectively parameterized with �1 and �2 via Eqs. (45) and (49).

When the motion X is a�ne, as discussed in §6.1, we have

pD0 = R�1
⇣
xD0 � t

⌘
. (50)

When a tetrahedral mesh is used to express X, assume that xD0 is
located inside a tetrahedron with vertices xA, xB, xC, xD 2 V(�0)
and has barycentric coordinates (u1,u2,u3). Similar to the surface
case, xA, xB, xC, xD, u1, u2, and u3 all depend on � in general. Then,
it holds that

pD0 = (1 � u1 � u2 � u3)pA + u1 pB + u2 pC + u3 pD, (51)

where p⇤ = detach(x⇤) for all ⇤ 2 {A, B,C,D}.

7 RESULTS
We implement our techniques presented in §4–§6 in C++ on the
CPU. Speci�cally, we develop a Monte Carlo estimator that samples
material light paths p̄ using unidirectional path tracing. Additionally,
we build another estimator that utilizes a bidirectional path sampling
scheme to handle challenging light transport e�ects such as caustics.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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PRELIMINARIES
ON PATH-SPACE 
DIFFERENTIABLE RENDERING
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PATH INTEGRAL
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• Introduced by Veach [1997]
• Foundation of sophisticated Monte Carlo

algorithms (e.g., BDPT, MCMC rendering)

Measurement 
contribution

Area-product 
measure

Object surfaces 𝓜

Path space Ω = ⋃!"#$ 𝓜!%#

Path space

𝐼 = %
!
𝑓 '𝒙 d 𝜇('𝒙)

Light path  %𝒙 = (⋯ , 𝒙&'# , 𝒙&, 𝒙&%#, ⋯ )

𝒙!"#
𝒙!$#

𝒙!
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EVOLVING SURFACE & PATH SPACE
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Evolving surface 𝓜≔𝓜(𝜃)

Hard to differentiate
the path integral wrt. 𝜃

𝓜=𝓜(𝜃!)𝓜 =𝓜(𝜃")

𝜃-dependent path space Ω ≔ Ω(𝜃)

Ω = +
#$"

%

𝓜#&"
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MATERIAL-FORM REPARAMETERIZATION
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Path integral 
Material-form
path integral 

𝐼 = #
!(#)

𝑓 %𝒙 d𝜇(%𝒙) 𝐼 = #
%!
𝑓 %𝒙

d𝜇(%𝒙)
d𝜇(%𝒑)

d𝜇(%𝒑)

Independent of 𝜃Dependent of 𝜃

(Material-form)
reparam.

Path-space Differentiable Rendering (PSDR) 
Zhang et al. 2020
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Boundary Integral

RECAP 
MATERIAL-FORM DIFFERENTIAL PATH INTEGRAL
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𝐼 = $
,-
𝑓 &𝒙

d𝜇(&𝒙)
d𝜇(&𝒑)

d𝜇(&𝒑)

Material-form path integral 
Differentiate

Material-form differential path integral 

Interior integral 

d𝐼
d𝜃 =

/
!"

d
d𝜃 𝑓 %𝒙

d𝜇(%𝒙)
d𝜇(%𝒑) d𝜇(%𝒑) + /

#!"
𝑔(%𝒑)d𝜇̇ %𝒑

𝒙𝟎

𝒙𝟑

𝒙𝟐

𝒙𝟏

Original
light path • Similar to the ordinary path integral

− Integrate over the material path space

− Differentiated integrand

Path-space Differentiable Rendering (PSDR) 
Zhang et al. 2020
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Boundary Integral

MATERIAL-FORM DIFFERENTIAL PATH INTEGRAL
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𝐼 = $
,-
𝑓 &𝒙

d𝜇(&𝒙)
d𝜇(&𝒑)

d𝜇(&𝒑)

Material-form path integral 
Differentiate

Material-form differential path integral 
d𝐼
d𝜃 =

/
!"

d
d𝜃 𝑓 %𝒙

d𝜇(%𝒙)
d𝜇(%𝒑) d𝜇(%𝒑) + /

#!"
𝑔(%𝒑)d𝜇̇ %𝒑

• Different from the ordinary path integral

− Integrate over boundary path space

− Unique to differentiable rendering

− Exactly one boundary segment

Boundary
light path

𝒙𝟑

𝒙𝟐

𝒙𝟏

Boundary segment

𝒙𝟎

Path-space Differentiable Rendering (PSDR) 
Zhang et al. 2020𝒙$ lies on the visibility boundary with respect to 𝒙%
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SUMMARY
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𝐼 = $
-
𝑓 &𝒙 d𝜇(&𝒙)Path integral

𝐼 = $
,-
𝑓 &𝒙

d𝜇(&𝒙)
d𝜇(&𝒑)

d𝜇(&𝒑)

(Material-form) reparam.

Material-form
path integral

d𝐼
d𝜃

= /
!"

d
d𝜃

𝑓 %𝒙
d𝜇(%𝒙)
d𝜇(%𝒑)

d𝜇(%𝒑) + /
#!"
𝑔(%𝒑)d𝜇̇ %𝒑

Differentiation

Material-form
differential
path integral
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OUR TECHNIQUE
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OVERVIEW
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𝐼 = $
-
𝑓 &𝒙 d𝜇(&𝒙)Path integral

𝐼 = $
,-
𝑓 &𝒙

d𝜇(&𝒙)
d𝜇(&𝒑)

d𝜇(&𝒑)

(Material-form) reparam.

Material-form
path integral

d𝐼
d𝜃

= /
!"

d
d𝜃

𝑓 %𝒙
d𝜇(%𝒙)
d𝜇(%𝒑)

d𝜇(%𝒑) + /
#!"
𝑔(%𝒑)d𝜇̇ %𝒑

Differentiation

Material-form
differential
path integral

𝐼 = $
-
𝑓 &𝒙 d𝜇(&𝒙)Path integral

𝐼 = $
,-
𝑓 &𝒙

d𝜇(&𝒙)
d𝜇(&𝒑)

d𝜇(&𝒑)

(Material-form) reparam.

Material-form
path integral

d𝐼
d𝜃

= /
!"

d
d𝜃

𝑓 %𝒙
d𝜇(%𝒙)
d𝜇(%𝒑)

d𝜇(%𝒑) + /
#!"
𝑔(%𝒑)d𝜇̇ %𝒑

Differentiation

Material-form
differential
path integral

We generalize this
framework to fully
support volumetric
light transport
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GENERALIZED PATH INTEGRAL

• Generalized path integral [Pauly et al. 2000]

− Similar form as Veach’s (surface-only) version

− Allows volume vertices 𝒙 ∈ 𝓥 (capturing 
subsurface scattering)

− Path space Ω = ⋃./#0 (𝓜∪ 𝓥).$#

16

OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.

𝐼 = %
!
𝑓 '𝒙 d𝜇('𝒙)

Measurement 
contribution

Path space

𝓥

Volume
vertex

Surfaces Volumes
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GENERALIZED (MATERIAL-FORM) REPARAMETERIZATION

• Both surfaces 𝓜 and volumes 𝓥 may be controlled by some 𝜃
− Example: a translating rectangle

• The path space Ω = ⋃./#0 (𝓜∪ 𝓥).$# also depends on 𝜃

17

OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.

𝓥 𝜽𝟏

𝓥 𝜽𝟐𝓜(𝜽𝟏)

𝓜(𝜽𝟐)

Translation 𝜃Objective:
Making the path space independent of 𝜃

Solution: 
Parameterizing surfaces 𝓜 and volumes 𝓥
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X 𝓥3, 𝜃4

X 𝓥3, 𝜃#

X 𝓜3, 𝜃4

Translation 𝜃

X 𝓜3, 𝜃#

GENERALIZED (MATERIAL-FORM) REPARAMETERIZATION

• Both surfaces 𝓜 and volumes 𝓥 may be controlled by some 𝜃

18

OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.

Ref. volume 𝓥3

Ref. surface 𝓜3

𝒑

X ⋅, 𝜃#

X ⋅, 𝜃4

X ⋅, 𝜃#

𝒑
X ⋅, 𝜃4

Smooth, one-to-one mapping X

Independent of 𝜃
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GENERALIZED (MATERIAL-FORM) REPARAMETERIZATION
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𝓜 𝜃

𝓜:

Ω 𝜃

%Ω
Material

path space
Reference

surface

Surfaces Path space

𝓥 𝜃

𝓥:
Reference

volume

Volumes
OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.

X 𝓜!, 𝜃"

6𝒙 = (⋯ , 𝒙'(" , 𝒙' , 𝒙'&", ⋯ )
X 𝓥!, 𝜃"

𝒙&

𝒙&'$ 𝒙&($

Ref. surface 𝓜!

6𝒑 = (⋯ , 𝒑'(" , 𝒑' , 𝒑'&", ⋯ )
Ref. volume 𝓥!

𝒑&

𝒑&'$

𝒑&($
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MATERIAL-FORM GENERALIZED PATH INTEGRAL
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Generalized
path integral

𝐼 = $
-(;)

𝑓 &𝒙 d𝜇(&𝒙)

Material-form
generalized path integral

𝐼 = $
,-
𝑓 &𝒙

d𝜇(&𝒙)
d𝜇(&𝒑)

d𝜇(&𝒑)

OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.

Ω 𝜃

%Ω
Material

path space

Path space

Domain of integration

X 𝓜!, 𝜃"

6𝒙 = (⋯ , 𝒙'(" , 𝒙' , 𝒙'&", ⋯ )
X 𝓥!, 𝜃"

𝒙&

𝒙&'$ 𝒙&($

Ref. surface 𝓜!

6𝒑 = (⋯ , 𝒑'(" , 𝒑' , 𝒑'&", ⋯ )
Ref. volume 𝓥!

𝒑&

𝒑&'$
𝒑&($
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𝒑&

𝒙& = X(𝒑&, 𝜃)𝓜 𝜃
𝓜)

X(𝒑' , 𝜃)

𝒙& = X(𝒑&, 𝜃)

𝓥)

𝒑&

𝓥(𝜃)

MATERIAL-FORM GENERALIZED PATH INTEGRAL

21

Material-form
generalized path integral

𝐼 = $
,-
𝑓 &𝒙

d𝜇(&𝒙)
d𝜇(&𝒑)

d𝜇(&𝒑)

d𝒙&
d𝒑&

=
d𝐴(𝒙&)
d𝐴(𝒑&)

Capturing area stretch

OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.

d𝒙&
d𝒑&

=
d𝑉(𝒙&)
d𝑉(𝒑&)

Capturing volume stretch

d𝑉(𝒑')
d𝐴(𝒑')

d𝐴(𝒙')
d𝑉(𝒙')

=

>
&

d𝒙&
d𝒑&
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Boundary Integral

GENERALIZED DIFFERENTIAL PATH INTEGRAL

22

𝐼 = /
!"
𝑓 %𝒙

d𝜇(%𝒙)
d𝜇(%𝒑)

d𝜇(%𝒑)

Material-form
generalized path integral 

Differentiate

Material-form
generalized differential path integral 

Interior integral 

d𝐼
d𝜃

= /
!"

d
d𝜃

?𝑓 %𝒑 d𝜇(%𝒑) + /
#!"
𝑔(%𝒑)d𝜇̇ %𝒑

• Interior integral:
− Over the same material path space 

as the ordinary path integral

?𝑓 %𝒑

Ordinary light path

𝒙)
𝒙$

𝒙%

OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.
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Boundary light path

Boundary Integral

GENERALIZED DIFFERENTIAL PATH INTEGRAL

23

𝐼 = /
!"
𝑓 %𝒙

d𝜇(%𝒙)
d𝜇(%𝒑)

d𝜇(%𝒑)

Material-form
generalized path integral 

Differentiate

Material-form
generalized differential path integral 
d𝐼
d𝜃

= /
!"

d
d𝜃

?𝑓 %𝒑 d𝜇(%𝒑) + /
#!"
𝑔(%𝒑)d𝜇̇ %𝒑

• Boundary integral:
− Unique to differentiable rendering

− Over the boundary path space

− Exactly one boundary segment

?𝑓 %𝒑

𝒙)
𝒙$

𝒙%
Bou

nd
ary

 se
gm

en
t

OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.
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BOUNDARY SEGMENT

4 types of boundary segment:

Volume to surfaceSurface to surface Surface to volume Volume to volume

24

…

…

…

…

…

… …
…

[Zhang et al. 2020]

Diff.

OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.
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BOUNDARY INTEGRAL

• Two key terms
− ∆ 7𝑓 &𝒑 : Difference in 7𝑓 &𝒑

across discontinuity 
boundaries

− 𝑣(𝒑?): Evolution “speed” of 
discontinuity boundaries
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Boundary Integral

Boundary light path
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DIFFERENCE OF MEASUREMENT CONTRIBUTION
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EVOLUTION OF DISCONTINUITY BOUNDARIES

27

d
d𝜃
𝐼 = /

!"

d
d𝜃

?𝑓 %𝒑 d𝜇(%𝒑) + /
#!"
∆ ?𝑓 %𝒑 𝑣(𝒑*) d𝜇̇(%𝒑)

𝑥)

𝑥)("
𝑥)("

𝑥)

OUTLINE

Path 
Integral

Mat-form
PI

Mat-form
Diff. PI

Reparam.

Diff.

𝑥* ∈ 𝓜(𝜽) 𝑥* ∈ 𝓥(𝜽)

𝑣(𝒑+) capture the normal velocity
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MONTE CARLO
ESTIMATOR
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ESTIMATING INTERIOR INTEGRAL
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Interior Integral

Generalized
differential path Integral 

Boundary Integral

Different MC estimators
• Can be estimated using identical path 

sampling strategies as forward rendering

− Unidirectional volumetric path tracing

− Bidirectional volumetric path tracing

− …

Ordinary
light path
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ESTIMATING BOUNDARY INTEGRAL
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Generalized
differential path Integral 

Boundary Integral

• Multi-directional sampling

− Construct boundary segment

− Construct sensor and source subpaths

Boundary
light path
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SAMPLING BOUNDARY SEGMENT

• To avoid explicit silhouette detection, we 
draw a boundary segment by
− Sample 𝒙B on a face edge

− Sample ray direction 𝝎B

− Sample 𝒙#, 𝒙4 along 𝝎B and −𝝎B

34
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SAMPLING BOUNDARY SEGMENT
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𝒙"

𝑥", 𝑥+ in volume

𝒙+

𝒙"

𝑥" in volume, 𝑥+ on surface

𝒙+

𝒙"

𝑥" on surface, 𝑥+ in volume

𝒙+

𝒙"

Case4: 𝑥", 𝑥+ on surface

𝒙+

fun sampleBoundarySegment(𝒙, 𝝎,):
Draw (𝒙- , 𝜔-)
Sample distance along 𝜔-, get 𝒙"
Sample distance along −𝜔-, get 𝒙+
If 𝒙" in volume:
If 𝒙+ in volume: case 1
Else:            case 2

Else:
If 𝒙+ in volume: case 3
Else:            case 4

return 𝒙", 𝒙+

Case 1

Case 2

Case 2

Case 4

Jacobian for the change of variables!
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Equal-time comparison
Path-Space Di�erentiable Rendering of Participating Media • 1:11

(a) Ordinary image (b) Finite di�erences (c) Ours (high) (d) Ours (low) (e) DTRT
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Fig. 9. Di�erentiable-rendering comparisons: (a) Ordinary images. (b) Derivatives obtained using finite di�erences (in a very long time). (c, d) Derivatives
estimated using our technique with high and low sample counts, respectively. (e) Derivative estimates generated using the di�erentiable volumetric path
tracing method introduced by Zhang et al. [2019]. Results in columns (d) and (e) are computed in equal time.

number independent of � . In Eq. (45), xP, xQ, and xS0 can all be ex-
pressed as automatic-di�erentiation-enabled vectors (as discussed
in §6.1). In what follows, we discuss how xD0 and pD0 —which depend
on the scene parameter � in general—can be computed in a di�er-
entiable fashion given xB and �B. After obtaining the derivative
[dpD

0/d� ]�=�0 , we can compute the change rate �(pD0 ) using Eq. (20).

Surface case. When xD0 is a surface vertex, as illustrated in Fig-
ure 7-b1, xD0 and its derivative [dx D

0/d� ]�=�0 can be computed using
di�erentiable ray tracing:

xD0 = rayTrace(xB,�B). (46)

Then, we obtainpD0 by transformingxD0 back to the reference surface.
Assume that

xD0 = (1 � u1 � u2)xA + u1 xB + u2 xC, (47)

where: xA,xB,xC 2 M(�0) are vertices of the mesh face containing
xD0 ; (u1,u2) are barycentric coordinates of xD0 within the triangular
face. Further, xA, xB, xC, u1, and u2 are determined by the dif-
ferentiable ray tracing process and can all depend on the scene
parameter � . Given Eq. (47), it follows that

pD0 = (1 � u1 � u2)pA + u1 pB + u2 pC, (48)

where p⇤ = X�1(x⇤, �0) = detach(x⇤) for each ⇤ 2 {A, B,C}.
We note that, given Eqs. (45)–(48), we essentially parameterize

the discontinuity curve near pD0 using �1.

Volume case. When xD0 is a volume vertex, as illustrated in Fig-
ure 7-b2, it must lie on the discontinuity plane determined by xS0
and the face edge xP xQ containing xB. Assume that

xD0 = xS0 + �2 (xB � xS0), (49)

for some �2 � 1. Then, the discontinuity plane containing xD0 is
e�ectively parameterized with �1 and �2 via Eqs. (45) and (49).

When the motion X is a�ne, as discussed in §6.1, we have

pD0 = R�1
⇣
xD0 � t

⌘
. (50)

When a tetrahedral mesh is used to express X, assume that xD0 is
located inside a tetrahedron with vertices xA, xB, xC, xD 2 V(�0)
and has barycentric coordinates (u1,u2,u3). Similar to the surface
case, xA, xB, xC, xD, u1, u2, and u3 all depend on � in general. Then,
it holds that

pD0 = (1 � u1 � u2 � u3)pA + u1 pB + u2 pC + u3 pD, (51)

where p⇤ = detach(x⇤) for all ⇤ 2 {A, B,C,D}.

7 RESULTS
We implement our techniques presented in §4–§6 in C++ on the
CPU. Speci�cally, we develop a Monte Carlo estimator that samples
material light paths p̄ using unidirectional path tracing. Additionally,
we build another estimator that utilizes a bidirectional path sampling
scheme to handle challenging light transport e�ects such as caustics.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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Target image
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• Optimize rotation angle
• Equal-time per iteration
• Identical optimization setting

− Learning rate (Adam)
− Initializations

O
ur

s
D

TR
T

RESULTS
Complex geometry



THE PREMIER CONFERENCE & EXHIBITION IN 
COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES 39

R
ef

er
en

ce
(F

in
ite

 d
iff

er
en

ce
)

O
ur

s
(h

ig
h 

sa
m

pl
e 

co
un

t)

D
TR

T
[Z

ha
ng

 e
t a

l. 
20

19
]Path-Space Di�erentiable Rendering of Participating Media • 1:11

(a) Ordinary image (b) Finite di�erences (c) Ours (high) (d) Ours (low) (e) DTRT

B
ra
nc

he
s

-1.0

1.0

B
us

t

-1.0

1.0

B
um

py
sp

he
re

N/A

-0.05

0.05

Fig. 9. Di�erentiable-rendering comparisons: (a) Ordinary images. (b) Derivatives obtained using finite di�erences (in a very long time). (c, d) Derivatives
estimated using our technique with high and low sample counts, respectively. (e) Derivative estimates generated using the di�erentiable volumetric path
tracing method introduced by Zhang et al. [2019]. Results in columns (d) and (e) are computed in equal time.

number independent of � . In Eq. (45), xP, xQ, and xS0 can all be ex-
pressed as automatic-di�erentiation-enabled vectors (as discussed
in §6.1). In what follows, we discuss how xD0 and pD0 —which depend
on the scene parameter � in general—can be computed in a di�er-
entiable fashion given xB and �B. After obtaining the derivative
[dpD

0/d� ]�=�0 , we can compute the change rate �(pD0 ) using Eq. (20).

Surface case. When xD0 is a surface vertex, as illustrated in Fig-
ure 7-b1, xD0 and its derivative [dx D

0/d� ]�=�0 can be computed using
di�erentiable ray tracing:

xD0 = rayTrace(xB,�B). (46)

Then, we obtainpD0 by transformingxD0 back to the reference surface.
Assume that

xD0 = (1 � u1 � u2)xA + u1 xB + u2 xC, (47)

where: xA,xB,xC 2 M(�0) are vertices of the mesh face containing
xD0 ; (u1,u2) are barycentric coordinates of xD0 within the triangular
face. Further, xA, xB, xC, u1, and u2 are determined by the dif-
ferentiable ray tracing process and can all depend on the scene
parameter � . Given Eq. (47), it follows that

pD0 = (1 � u1 � u2)pA + u1 pB + u2 pC, (48)

where p⇤ = X�1(x⇤, �0) = detach(x⇤) for each ⇤ 2 {A, B,C}.
We note that, given Eqs. (45)–(48), we essentially parameterize

the discontinuity curve near pD0 using �1.

Volume case. When xD0 is a volume vertex, as illustrated in Fig-
ure 7-b2, it must lie on the discontinuity plane determined by xS0
and the face edge xP xQ containing xB. Assume that

xD0 = xS0 + �2 (xB � xS0), (49)

for some �2 � 1. Then, the discontinuity plane containing xD0 is
e�ectively parameterized with �1 and �2 via Eqs. (45) and (49).

When the motion X is a�ne, as discussed in §6.1, we have

pD0 = R�1
⇣
xD0 � t

⌘
. (50)

When a tetrahedral mesh is used to express X, assume that xD0 is
located inside a tetrahedron with vertices xA, xB, xC, xD 2 V(�0)
and has barycentric coordinates (u1,u2,u3). Similar to the surface
case, xA, xB, xC, xD, u1, u2, and u3 all depend on � in general. Then,
it holds that

pD0 = (1 � u1 � u2 � u3)pA + u1 pB + u2 pC + u3 pD, (51)

where p⇤ = detach(x⇤) for all ⇤ 2 {A, B,C,D}.

7 RESULTS
We implement our techniques presented in §4–§6 in C++ on the
CPU. Speci�cally, we develop a Monte Carlo estimator that samples
material light paths p̄ using unidirectional path tracing. Additionally,
we build another estimator that utilizes a bidirectional path sampling
scheme to handle challenging light transport e�ects such as caustics.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.
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Target image

• Optimize area light position
• Equal-time per iteration
• Identical optimization setting

− Learning rate (Adam)
− Initializations

RESULTS
Complex light transport effect
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RESULTS
Joint optimization of geometry and material

Init image Target image
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LIMITATIONS AND FUTURE WORK

• Current implementation: CPU only
− Can not handle large number of parameters (~millions)

− GPU implementation for real-world application

• Implicit scene geometry
− Signed distance field (SDF)

− Topology changes

• Primary-sample-space (PSS)
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CONCLUSION

• Generalized differential path integral
− Interfacial and volumetric light transport

• Monte Carlo methods
− Handle interior and boundary separately

− Complex geometry

− Complex light transport effects (multiple scatterings, volumetric caustics)
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