

Free-form Scanning of Non-planar Appearance with Neural Trace Photography

Xiaohe Ma¹

Kaizhang Kang ¹

Ruisheng Zhu¹

Hongzhi Wu¹

¹ State Key Lab of CAD&CG, Zhejiang University
² ZJU-FaceUnity Joint Lab of Intelligent Graphics

• Realistic Material Appearance is Important

Culture Heritage

e-Commerce

Visual Effects

© Paramount Pictures

Lycurgus Cup ©The British Museum

Capturing Appearance is Challenging

3D Mesh

6D SVBRDF (Varies with Location, Lighting & View)

Digital Model

[Kang et al. 2019]

[Aittala et al. 2015

Sampling Efficiency	High	Low	
Spatial Coherence	No		
Anisotropic	Yes		
Movable	No		
Max Sample Size	Limited		

Differentiable Framework

- High-quality Scanning of Anisotropic Appearance
- Automatically Learns
 - Lighting Condition
 - Measurements => Reflectance
- Adapts to Various Factors
 - Point/Linear/Area Light
 - Setup's Geometry

Our Scanned Results

Key Insight: Appearance Scanning = Geometry Learning

Related Work

Related Work

Fixed View(s)

Unstructured Views

Deep-Learning-Based Priors

Fixed View(s) - Point Light(s)

- [Dong et al. 2010; Aittala et al. 2015;2016; Li et al. 2017; Deschaintre et al. 2018]
- Nearly Flat Appearance
- Low Efficiency in Lighting-View Domain
 - Point Sampling

Fixed View(s) - Illumination Multiplexing

- Linear Light Source
 - [Gardner et al. 2003; Ren et al. 2011; Chen et al. 2014]
 - Planar Appearance
 - Some Requires Pre-captured BRDF Patches
- Lightstages
 - [Ghosh et al. 2009; Tunwattanapong et al. 2013; Aittala et al. 2013; Kang et al. 2019]
 - Anisotropic
- Pixel-Independent Reconstruction
- Require a Fixed View
 - No Information Aggregation Across Views

[Gardner et al. 2003]

[Ren et al. 2011]

Related Work

Multiplexing

Deep-Learning-Based Priors

b)

Unstructured Views - Traditional Priors

- Camera-Flash [Lensch et al. 2003; Riviere et al. 2016; Nam et al. 2018]
- Kinect Sensor [Wu et al. 2015]
- Require Spatial Coherence for Regularization
 - e.g. Linear Combinations of Basis Materials
- Isotropic Reflectance

[Lensch et al. 2003]

[Riviere et al. 2016]

Unstructured Views - Deep-Learning-Based Priors

[Deschaintre et al.2019; Gao et al.2019; Guo et al.2020; Bi et al. 2020]

- Unclear How to Extend to Complex Lights
- Often **Discard** View Conditions
- Isotropic Reflectance

[Deschaintre et al.2019]

[Gao et al.2019]

- LED Array
 - 512 Lights
 - 32cm×16cm
 - 40W
- Single Camera
 - Basler acA2440-75uc
 - 75fps
 - Resolution 2448×2048
- High-Precision Synchronization
 - Custom-designed Circuits/FPGA

• Why an LED Array ?

Point Sampling in Illumination Domain

LED Array

Sample Multiple Lights Simultaneously,)

Appearance Acquisition Scene

Captured Images

Our Framework

Assumptions

- Pre-Captured 3D Shape
- Pixel-Independent Reconstruction
- Fixed Lighting Pattern
- Relative Motion
 - Fixed Scanner / Moving Sample

Neural Trace Photography

Lumitexel

Scanner

Per-Point Lumitexel

Lumitexel

Scanner

Per-Point Lumitexel

Lumitexel

Scanner Sample

Per-Point Lumitexel

Illumination Multiplexing

Scanner

Per-point Pipeline

Per-point Pipeline

Trace

- Previous Work
 - [Dong et al. 2014; Gardner et al.2003; Ren et al. 2011; Morris and Kutulakos 2007]
- Our Definition:

A Collection of High Dimensional Points

Each Point = Measure. + Acquisition Condition

Lighting Condition + View Condition

Varying

Fixed

View Conditions

Trace

- Correlation Between Trace & Lumitexel
 - Challenging to Derive Manually

• Order Independence

• Irregularly Sampled

• Variable-Length

Trace

- Correlation Between Trace & Lumitexel
- Order Independence
- Irregularly Sampled
- Variable-Length

Motivate the Use of Geometry Learning Tools

Key Insight: Appearance Scanning = Geometry Learning

Per-point Pipeline

Output Lumitexel

- Challenges
 - LED Array Coverage is Incomplete
 - Multiple Unstructured Views
 - Which View Should Be the Output One?

Output Lumitexel

- Virtual Camera
- Virtual Lights
 - 6×8^2 Diffuse Lumitexel
 - 6 × 32² Specular Lumitexel
- Use the Shading Frame as the Coordinate System

Parameterization For Output Lumitexel

Synthetic Lumitexel Reconstruction

Output Lumitexel

- Virtual Camera
- Virtual Lights
 - 6 × 8² Diffuse Lumitexel

Only Geometric Frame is Known. Accurate Shading Frame is Unknown!

Parameterization For Output Lumitexel

Front Bottom

Virtual Lights

Output Lumitexel

Use Geometric Frame Instead

Per-point Pipeline

Trace Scanning Variant Info Scanning Invariant Info

Reflectance Properties

What We Want!

Loss Function

β: Confidence = Input Highlight Coverage

$\beta = 0.5$	$\beta = 0.75$	$\beta = 1.0$		
Less Coverage —		→ More Coverage		

Per-point Pipeline

Fitting

Our Pipeline

Final Texture Maps

Training Data

- 200M Synthetic Traces
 - Random BRDF Parameters (Anisotropic GGX)
 - Random Position / Visible Local Frame for Each View
- To Increase Robustness
 - Add Gaussian Noise to BRDF Parameters / Simulated Measurements
 - 30% Dropout Rate to fc Layers

Statistics

Max Dimension of a Sample9~32cmShape Scanning20minutesAppearance Scanning9minutes (1,000 photos)

Image Registration Lumitexel Prediction Reflectance Fitting Training 2 hours
6 minutes
2 hours
66 hours

Results

Captured Appearance Rendered with Novel Lighting & View Conditions

	Diffuse Albedo	Specular Albedo	Normal	Tangent	Roughnesses	Geometry
Ironman						
Amiibo						
Bust						
Vase						

Validation Results

Comparisons

Photo

[Nam et al. 2018]

Ours

Scanned Shape + Optimized Pattern Shape from [Nam et al. 2018] + Optimized Pattern

Comparisons

Ours

High-End Lightstage [Kang et al. 20<u>19]</u>

Evaluations

Repeatability

Scan #1

Scan #2

Impact of Geometric Quality

High Quality Mesh from 3D Scanner Filtered Mesh from 3D Scanner

Mesh from COLMAP

Impact of Camera Pose Error

Impact of Specular Highlight Coverage

Impact of Lighting Patterns

Impact of Training Views

Training Views #

Impact of Test View

Limitations

- No Consideration for Global Illumination
- Need a Relatively Precise 3D Shape
- Cannot Recover Appearance Substantially Deviated from Training Samples

Conclusions

- Differentiable Framework for High-quality Scanning of Anisotropic Appearance
 - Neural Trace Photography
- Automatically Learns
 - Lighting Condition
 - Measurements => Reflectance
- Adapts to Various Factors
 - Point/Linear/Area Light
 - Setup's Geometry

Future Work

• Extend to a Similar Device

iPad Pro (2nd Gen)

• Unified Neural Scanner for Shape + Reflectance

Acknowledgements

- Anonymous Reviewers
- Minyi Gu, Yaxin Yu, Zimin Chen, Lijian Ge (Zhejiang University)
- Yang Li (National Museum of China)
- Giljoo Nam, Min H. Kim (KAIST)
- Yue Dong (MSRA)
- Yiruo Zhao
- National Key Research & Development Program of China (2018YFB1004300)
- National Science Foundation of China (61772457, 62022072 & 61890954)

Thank you/謝謝

