

Learning Meaningful Controls for Fluids

Mengyu Chu¹, Nils Thuerey², Hans-Peter Seidel¹, Christian Theobalt¹, and Rhaleb Zayer¹ 1 Max Planck Institute for Informatics, Saarland Informatics Campus 2 Technical University of Munich

\rightarrow Motivation

Direct simulation

\rightarrow Motivation

SIGGRAPH 2021

→ Related Work

- Flexible fluid manipulations for users:
 - Fluid control to match target distributions
 - Fluid guiding to match coarse target
 - Detail synthesis to add fine features

Ours: a simulation method with visual manipulations

[Forootaninia and Narain 2020]

[Xie et al. 2018]

- Deep learning algorithms
 - GANs [Goodfellow et al. 2014]
 - Conditional GANs
 - Fighting against mode collapse

Ours: improved control sensitivity

\rightarrow Method

Our simulation:

 \boldsymbol{u}_t = Generator (d_t , ...) d_{t+1} = Advection (d_t , \boldsymbol{u}_t)

→ Method

→ 3D Results Based on Initial Density

→ 3D Results with Modifications

9

→ Generalization to Drawings

→ Generalization to Texture-Based Controls

→ Method

© 2021 SIGGRAPH. All Rights Reserved.

u output w.o. Modifications d input

u output with

Open Boundary

\rightarrow Method

Control Disentanglement:

$$\begin{cases} \boldsymbol{u}_t = \mathsf{G} \left(d_t, \underline{\boldsymbol{s}}, \mathrm{KE}, \boldsymbol{\omega} \right) \\ d_t, \boldsymbol{s}, \mathrm{KE}, \boldsymbol{\omega} = \mathsf{D} \left(\boldsymbol{u}_t \right) \end{cases}$$

 $\mathcal{L}_{G,\text{Restore}} = \|\boldsymbol{u}_t - \mathsf{G}(d_t)\| + \|d_t - \mathsf{D}(\mathsf{G}(d_t))\|$ $\mathcal{L}_{\mathsf{D}} = \|d_t - \mathsf{D}(\boldsymbol{u}_t)\| - \|d_t - \mathsf{D}(\mathsf{G}(d_t))\|$ $\mathcal{L}_{G,\text{Mod}} = \|(d_t, \mathsf{s}', \mathsf{KE}', \boldsymbol{\omega}') - \mathsf{D}(\mathsf{G}(d_t, \mathsf{s}', \mathsf{KE}', \boldsymbol{\omega}'))\|$

\rightarrow Method

Velocity (u)

$$\mathcal{L}_G = \mathcal{L}_{G, \text{Restore}} + \mathcal{L}_{G, \text{Mod}}$$

 $\mathcal{L}_{G,\text{Mod}} = \|(d_t, \mathbf{s}', \text{KE}', \boldsymbol{\omega}') - \mathsf{D}(\mathsf{G}(d_t, \underline{\mathbf{s}', \text{KE}', \boldsymbol{\omega}'}))\|$

s': sampled from the training range

KE', $\boldsymbol{\omega}'$: calculated from a modified velocity

with wavelet turbulence [Kim et al. 2008]

THE PREMIER CONFERENCE & EXHIBITION IN COMPUTER GRAPHICS

& INTERACTIVE TECHNIQUES

→ Method

→ Results and Use Cases

Obstacle design

Velocity difference

seen min

unseen interp.

seen max

above training rg.

Code & More information:

github.com/RachelCmy/den2vel

→ Conclusions

- Contributions:
 - Simulations with single-density input
 - Multiple controls simultaneously
 - Highly-sensitive cyclic GAN
 - Strong generalizability

- Limitations:
 - Historical information, 3D resolution, ...
- Future directions:
 - Visual controls (streamlines, captures)

→ Conclusions

