Graphics And Mixed Environment Seminar 12/16/2021

Incompressible fluid simulation based on vortex surface field

Shiying Xiong Dartmouth College

Dartmouth Computer Science

Content

Background

□ Vortex surface field and Clebsch representation

□ Construction of knotted Clebsch fields

□ Clebsch gauge fluid

Votical flows

Jellyfish vs bubble ring.

Wingtip vortices from airplanes.

https://www.quora.com/What-is-the-vortex-ring-state-in-a-helicopter

Vortex surfaces and vortex lines in fluids

10 September 2019 CAMBRIDGE UNIVERSITY PRESS Journal of **Fluid Mechanics VOLUME 874**

Vortex surface in the transitional channel flow. S. Xiong & Y. Yang, *J. Comput. Phys.,* 2017 Chaotic flux lines inside the magnetic knot. S. Xiong & Y. Yang, *J. Fluid Mech.*, 2020

Vortex surfaces in isotropic turbulence. S. Xiong & Y. Yang, *J. Fluid Mech.*, 2019

Vortex filament method

Simulation of a jet. S. Weißmann & U. Pinkall, SIGGRAPH, 2010

Various examples of animated flows. A. Angelidis & F. Neyret, *Eurographics,* 2015

Vortex segment method

"a physical vortex is approximated by a cloud of tubular vortices" (Chorin, 1990)

Various examples of animated flows. S. Xiong *et al.*, *SIGGRAPH*, 2021

Content

Background

□ Vortex surface field and Clebsch representation

Construction of knotted Clebsch fields

□ Clebsch gauge fluid

Vortex surface field (VSF)

 Vortex surfaces: tangent to vorticity lines on every point
 Vortex surfaces are material surfaces in inviscid flows
 Timewise evolution of smooth VSFs in viscous flows elucidates continuous vortex dynamics

H. von Helmholtz (1821-1894)

Evolution of vortex surface in Taylor-Green flow Y. Yang and D. I. Pullin, *J. Fluid Mech.*, 2011

8

Vorticity Clebsch representation

□ Vorticity Clebsch map (Alfred Clebsch, 1985)

$$\boldsymbol{\omega} = \boldsymbol{\nabla} \psi \times \boldsymbol{\nabla} \chi$$

Advantages

□ Vortex surface field (Y. Yang & D. I. Pullin, 2010) $\boldsymbol{\omega} \cdot \boldsymbol{\nabla} \psi = \boldsymbol{\omega} \cdot \boldsymbol{\nabla} \chi = 0$

Hamiltonian mechanics

Limitations

 \Box Can only represent fields with zero helicity $H = \int \boldsymbol{u} \cdot \boldsymbol{\omega} = 0$

Clebsch map may not exist near points of vanishing vorticity (Graham and Henyey, 2000)

Spherical Clebsch representation

Spherical Clebsch map (Kuznetsov & Mikhailov 1980, Chern *et al.*, 2016)

$$s_1^2 + s_2^2 + s_3^2 = 1$$
$$\boldsymbol{\omega} = \frac{\hbar}{2} (s_1 \nabla s_2 \times \nabla s_3 + s_2 \nabla s_3 \times \nabla s_1 + s_3 \nabla s_1 \times \nabla s_2)$$

- \Box Vortex surface field $\boldsymbol{\omega} \cdot \boldsymbol{\nabla} s_p = 0, p = 1, 2, 3$
- □ Work well with fields carrying non-zero helicity
- □ Hamiltonian mechanics

Geometry of Clebsch variables

□ For a flow described by a vorticity 2-form ω , a function $c: M \to \Sigma$ for some 2-dimensional manifold Σ equipped with an area form dA_{Σ} is called a Clebsch variable if $\omega = c^* dA_{\Sigma}$ where $c^* dA_{\Sigma}$ denotes the pull back of the area form.

$$\int_{\Omega} \omega = \int_{c(\Omega)} dA_{\Sigma} = \operatorname{Area}_{\Sigma}(c(\Omega))$$

Schrödinger's Smoke Chern et al., *SIGGRAPH*, 2016

Lift

□ Hopf bundle (Spherical clebsch map)

$$\phi = (\phi_1, \phi_2)^T = (a + bi, c + di)^T$$
, with $\langle \phi, \phi \rangle_{\mathbb{R}} = 1$
 $s_1 = a^2 + b^2 - c^2 - d^2$, $s_2 = 2(bc - ad)$, $s_3 = 2(ac + bd)$

.7

 π

 (\mathcal{D})

S

N

Component form of spherical Clebsch map

□ Wave function

$$\boldsymbol{\phi} = (\phi_1, \phi_2)^T = (a + b\mathbf{i}, c + d\mathbf{i})^T, \text{ with } \langle \boldsymbol{\phi}, \boldsymbol{\phi} \rangle_{\mathbb{R}} = 1$$
$$\boldsymbol{u} = \hbar \langle \boldsymbol{\nabla} \boldsymbol{\phi}, \mathbf{i} \boldsymbol{\phi} \rangle_{\mathbb{R}} = \hbar (a \boldsymbol{\nabla} b - b \boldsymbol{\nabla} a + c \boldsymbol{\nabla} d - d \boldsymbol{\nabla} c)$$

Spin vector

$$s = (s_1, s_2, s_3)$$

$$s_1 = a^2 + b^2 - c^2 - d^2, \ s_2 = 2(bc - ad), \ s_3 = 2(ac + bd)$$

$$\omega = \frac{\hbar}{2}(s_1 \nabla s_2 \times \nabla s_3 + s_2 \nabla s_3 \times \nabla s_1 + s_3 \nabla s_1 \times \nabla s_2)$$

$$\omega \cdot \nabla s_p = 0, \ p = 1, 2, 3$$

Gauge transformation

Gauge transformation of wave functions

$$oldsymbol{\phi} oldsymbol{\phi} \phi \exp\left(\mathrm{i}rac{arphi}{\hbar}
ight) \quad \Longleftrightarrow \quad oldsymbol{u} oldsymbol{\to} oldsymbol{u} + oldsymbol{
abla} arphi$$

□ Incompressible flow

$$\langle i \boldsymbol{\phi}, \Delta \boldsymbol{\phi} \rangle_{\mathbb{R}} = 0 \iff \boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$$

Constant background velocity

$$oldsymbol{\psi} = oldsymbol{\phi} \exp\left(\mathrm{i}rac{
ho^i}{\hbar^i}oldsymbol{U}\cdotoldsymbol{x}
ight) \quad \Longleftrightarrow \quad oldsymbol{u}_\psi = oldsymbol{u}_\phi + oldsymbol{U}$$

Obejectives

Propose feasible methods for constructing spherical Clebsch maps with finite energy, arbitrary geometry, and tunable helicity

Propose a gauge fluid framework based on spherical Clebsch wave functions to solve incompressible fluids

Content

Background

□ Vortex surface field and Clebsch representation

Construction of knotted Clebsch fields

□ Clebsch gauge fluid

Construction of Clebsch map (wave function)

□ Transform the Cartesian coordinates

$$\begin{cases} \alpha = \frac{2(x + iy)f(r)}{1 + r^2} \\ \beta = \frac{2(z - i)f(r) + (1 + r^2)i}{1 + r^2} \end{cases}$$

Construct polynomials to represent the twist and the geometric position of the flux tube

$$P = P(\alpha, \beta, \overline{\alpha}, \overline{\beta}) \qquad Q = Q(\alpha, \beta, \overline{\alpha}, \overline{\beta})$$

□ Normalization and solenoidal projection

$$\phi_1 = \frac{P e^{-iq/\hbar}}{\sqrt{|P|^2 + |Q|^2}}, \quad \phi_2 = \frac{Q e^{-iq/\hbar}}{\sqrt{|P|^2 + |Q|^2}}, \quad \Delta q = \hbar \left\langle \Delta \psi, i\psi \right\rangle_{\mathbb{R}}$$

R. Tao, H. Ren, Y. Tong, & S. Xiong*, Phys. Fluids., 2021

Isosurfaces of spin vector of initial knotted vortex tubes with six different wave functions. R. Tao, H. Ren, Y. Tong, & S. Xiong*, *Phys. Fluids.*, 2021

Construction of Clebsch map (Spin vector)

Assumptions of the field (Gold & Hoyle, 1960)

The axial component only depends on distance from the axis
 All points of a vector line have the same distance from the axis
 On vector lines, azimuth changes with the rate only depends on arclength

$$\begin{cases} s_1 = 2\sqrt{\frac{F}{\Gamma}\left(1 - \frac{F}{\Gamma}\right)}\cos(2\pi qG), \\ s_2 = 2\sqrt{\frac{F}{\Gamma}\left(1 - \frac{F}{\Gamma}\right)}\sin(2\pi qG), \\ s_3 = 1 - 2\frac{F}{\Gamma}, \end{cases} \begin{cases} F(\rho) = 2\pi \int_0^{\rho} f(\lambda)\lambda d\lambda \\ G = \frac{\theta}{2\pi} - \Xi(s) \\ S_C: \text{ the plane spanned by } N \text{ and } E \\ S_C: \text{ the plane spanned by } N \text{ and } E \\ S_C: \text{ the plane spanned by } N \text{ and } E \end{cases}$$

S. Xiong & Y. Yang, Phys. Fluids., 2019, J. Fluid Mech., 2020

Decomposition of the helicity

□ Helicity decomposes into **central-line helicity** and **twist helicity**

S. Xiong & Y. Yang, Phys. Fluids., 2019, J. Fluid Mech., 2020

Evolution of flux tubes

Linked rings with opposite chirality can reconnect after a short time, resulting in rapid scale cascade towards a turbulent-like state In the relaxation of knotted magnetic tubes, magnetic energy is gradually released and converted to kinetic energy

S. Xiong & Y. Yang, Phys. Fluids., 2019, Sci. Sin-Phys. Mech. Astron., 2020, J. Fluid Mech., 2020

Splitting of magnetic tubes

Pressure is approximated as a solenoidal projection of Lorentz force
 Concentration of magnetic field increases with twist increasing

(a) (b) (c) (d) (a) $T_{w} = 0$ (b) $T_{w} = 12.84$ (b) $T_{w} = 32.84$

S. Xiong & Y. Yang, J. Fluid Mech., 2020

Content

Background

□ Vortex surface field and Clebsch representation

Construction of knotted Clebsch fields

Clebsch gauge fluid

Lagrangian advection

$$\begin{cases} \frac{D\phi}{Dt} = \boldsymbol{f}^{\phi}\phi \\ \frac{Ds}{Dt} = 2\boldsymbol{s} \times \boldsymbol{f}^{s} \\ \frac{Du}{Dt} = -\boldsymbol{\nabla}\left(\frac{|\boldsymbol{u}|^{2}}{2} - \hbar\langle\boldsymbol{s},\boldsymbol{f}^{s}\rangle_{\mathbb{R}}\right) - \hbar\langle(\boldsymbol{\nabla}\boldsymbol{s}),\boldsymbol{f}^{s}\rangle_{\mathbb{R}} \\ \frac{\partial\omega}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{\omega}) - \hbar\boldsymbol{\nabla} \times \langle(\boldsymbol{\nabla}\boldsymbol{s}),\boldsymbol{f}^{s}\rangle \end{cases}$$

Schrödinger flows (Chern et al., 2016)

$$\begin{aligned} f^{\phi} &= -\mathrm{i}\frac{1}{\hbar}\left(\frac{p}{\rho} - G - \frac{|\boldsymbol{u}|^{2}}{2}\right) & f^{\phi} &= -\frac{\hbar}{4}\phi s(s \times \Delta s)\overline{\phi} + \mathrm{i}\frac{1}{\hbar}\left(\frac{|\boldsymbol{u}|^{2}}{2} - \frac{p}{\rho}\right) \\ \\ \frac{D\phi}{Dt} &= -\mathrm{i}\frac{1}{\hbar}\left(\frac{p}{\rho} - G - \frac{|\boldsymbol{u}|^{2}}{2}\right)\phi & \Pi &= \hbar^{2}\frac{|\boldsymbol{\nabla}\phi|^{2}}{2} + \hbar^{2}\frac{\langle s,\Delta s\rangle}{4} + \frac{p}{\rho} - \frac{|\boldsymbol{u}|^{2}}{2} \\ \\ \frac{\partial \phi}{\partial t} - \mathrm{i}\frac{\hbar}{2}\Delta\phi + \mathrm{i}\frac{1}{\hbar}\Pi\phi &= \mathbf{0} \\ \\ \frac{\partial s}{Dt} &= \hbar^{2}s \times \Delta s \\ \\ \frac{Du}{Dt} &= -\boldsymbol{\nabla}\frac{p}{\rho} - \left(\frac{\hbar}{2}\right)^{2}\langle(\boldsymbol{\nabla}s),\Delta s\rangle_{\mathbb{R}} \\ \\ \frac{\partial \omega}{\partial t} &= \boldsymbol{\nabla}\times(\boldsymbol{u}\times\boldsymbol{\omega}) - \left(\frac{\hbar}{2}\right)^{2}\boldsymbol{\nabla}\times\langle(\boldsymbol{\nabla}s),\Delta s\rangle_{\mathbb{R}} \end{aligned}$$

S. Yang, S. Xiong*, Y. Zhang, F. Feng, J. Liu, and B. Zhu, SIGGRAPH, 2021 R. Tao, H. Ren, Y. Tong, & S. Xiong*, *Phys. Fluids.*, 2021

Euler flows

Gauge transformation for divergence-free projection

Gauge transformation for surface tension

We introduce an auxiliary variable q to handle interface conditions

$$\begin{cases} \frac{D\psi}{Dt} = -i\frac{\rho^{i}}{\hbar^{i}}q\psi & \begin{cases} \boldsymbol{u}\cdot\boldsymbol{n} = \boldsymbol{n}\cdot\boldsymbol{u}_{\partial} \\ \partial_{n}q = 0 & \\ \partial_{n}\varphi = 0 \end{cases} \\ \boldsymbol{u}_{m} = \frac{\hbar^{i}}{\rho^{i}}\langle\boldsymbol{\nabla}\psi,i\psi\rangle_{\mathbb{R}} & \boldsymbol{x}\in\Omega^{i} \\ \Delta q = 0 & \\ \Delta \varphi = \boldsymbol{\nabla}\cdot\boldsymbol{u}_{m} & \\ \boldsymbol{u} = \boldsymbol{u}_{m} - \boldsymbol{\nabla}\varphi & \begin{cases} [\varphi]_{jump} = [\partial_{n}\varphi]_{jump} = 0 \\ \left[\rho^{i}\left(q + G + \frac{D\varphi}{Dt} + \frac{|\boldsymbol{u}|^{2}}{2}\right)\right]_{jump} = \gamma\kappa \end{cases} \boldsymbol{x}\in\partial\Omega_{f}^{i} \end{cases}$$

Leapfrogging vortex rings

(Comparison with the standard grid-based method)

Wave functions and VSF in Leapfrogging vortex rings

Oblique ring collision

(Comparison with the standard grid-based method)

Smoke flowing over a bunny obstacle

*

Smoke flowing over multiple obstacles

Droplet

Liquid flowing over multiple obstacles

Conclusions

❑ We propose two feasible methods for constructing spherical Clebsch maps with the finite energy, arbitrary geometry, and tunable helicity

We propose a Clebsch gauge fluid framework (math, algorithm, code) to solve incompressible fluid equations

Our fluid solver can be used to solve various fluid dynamics, including complex vortex reconnection, fluids with different obstacles, and surfacetension flows

Future work

- Further study on the math foundation and numerical method for the Clebsch gauge fluid
- Extend the proposed framework to describe different physics, such as solid-fluid interaction, magnetohydrodynamics, and thin-film flows

Ruan et al., SIGGRAPH, 2021 Ni et al., SIGGRAPH, 2020 Wang et al., SIGGRAPH, 2021

Thank you!

shiying.xiong@dartmouth.edu

