Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang

Qing Shuai, Hujun Bao, Xiaowei Zhou

香港中文大學 The Chinese University of Hong Kong

Problem statement: what is novel view synthesis

Input views

Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Problem statement: what is novel view synthesis

Input views

Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Novel view synthesis

Application: Sports broadcasting

BROADCASTING

SPORTS

Show images controlled by time and space in every 16 milliseconds

4DREPLAY. https://www.4dreplay.com/

Application: Telepresence

https://www.youtube.com/watch?v=QI3CishCKXY

Application: Telepresence

https://www.youtube.com/watch?v=QI3CishCKXY

Related work

Light field interpolation

Gortler, Davis, Levoy, Hanrahan, et al.

Neural 3D representation

Sitzmann, Lombardi, Wu, Aliev, Thies, et al.

Image-based rendering

Kalantari, Hedman, Choi, Wang, et al.

Mildenhall, Yu, Trevithick, Liu, Reiser, et al.

Related work: 2D CNN-based rendering

Multi-view Neural Human Rendering. In CVPR, 2020.

Related work: 2D CNN-based rendering

Multi-view Neural Human Rendering. In CVPR, 2020.

Multi-view images

Encoder-decoder

Neural Volumes: Learning Dynamic Renderable Volumes from Images. In SIGGRAPH, 2019.

Related work: RGB-alpha volume

Volume rendering

Multi-view images

Encoder-decoder

Neural Volumes: Learning Dynamic Renderable Volumes from Images. In SIGGRAPH, 2019.

Related work: RGB-alpha volume

Volume rendering

Related work: Neural radiance field

Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Challenges for NeRF

• Cannot handle dynamic scenes.

• Require dense input views.

Challenges for NeRF

• Cannot handle dynamic scenes.

• Require dense input views.

Our task: Produce free-viewpoint videos from sparse multi-view videos

Input: 4-view video

Output: free viewpoint video

Our task: Produce free-viewpoint videos from sparse multi-view videos

Motivation: Integrate temporal information for more observations

Input: 4-view video

Output: free viewpoint video

Key idea: Integrate temporal information with latent variable model

Generate scenes at different video frames from the same set of latent variables

Overview of our method

- Human motion capture from multi-view videos.
- Structured latent codes.

• Generate neural radiance fields from structured latent codes.

Overview of our method

- Human motion capture from multi-view videos.
- Structured latent codes.

Recover SMPLs

• Generate neural radiance fields from structured latent codes.

Overview of our method

- Human motion capture from multi-view videos.
- Structured latent codes.
- Generate neural radiance fields from structured latent codes.

Method: I) Human motion capture

- → need correspondences
- → need proxy geometry
- \rightarrow SMPL model !

Integrating temporal information requires us to associate different video frames

Frame 300

Frame 150

SMPL can be accurately recovered from sparse multi-view videos

https://www.youtube.com/watch?v=kuBlUyHeV5U

Method: I) Human motion capture

Capture human motion using https://github.com/zju3dv/EasyMocap

Recover SMPLs

Method: 2) Define structured latent codes on SMPL

For each SMPL vertex, we assign a learnable latent code

Method: 2) Define structured latent codes on SMPL

Set the code locations according to the SMPL pose

Structured latent codes

How to generate continuous scenes from discrete latent codes

Structured latent codes

The network pipeline

The network pipeline

The network pipeline

Latent code volume

Results on ZJU-MoCap dataset training on 4-view videos

NeRF [I]

[1] Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.
[2] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.
[3] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.

NeRF [I]

Neural Volumes [2]

[1] Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.
[2] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.
[3] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.

NeRF [I]

Neural Volumes [2]

[1] Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.
[2] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.
[3] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.

NHR [3]

NeRF [I]

Neural Volumes [2]

[1] Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.
[2] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.
[3] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.

NHR [3]

NeRF [I]

Neural Volumes [2]

[1] Mildenhall, Ben, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.
[2] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.
[3] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.

NHR [3]

OURS
Novel view synthesis of dynamic human

Neural Volumes [1]

[1] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.

[2] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.

OURS

Novel view synthesis of dynamic human

Neural Volumes [1]

[1] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019.

[2] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.

NHR [2]

OURS

[1] Lombardi, Stephen, et al. Neural volumes: Learning dynamic renderable volumes from images. In SIGGRAPH, 2019. [2] Thies, Justus, et al. Deferred neural rendering: Image synthesis using neural textures. In ACM TOG, 2019. [3] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.

Quantitative comparison

Ablation studies: video length

Frames	1	60	300	600	1200
PSNR	25.64	30.14	30.66	30.59	29.97
SSIM	0.940	0.970	0.971	0.970	0.970

Table 4: Results of models trained with different numbers of training frames. We train models on 1, 60, 300, 600, and 1200 frames and test on the first frame of "Twirl".

3D Reconstruction

Input video

Reconstructed geometry

3D Reconstruction

PIFuHD

Saito, Shunsuke, et al. PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization. In CVPR, 2020.

3D Reconstruction

PIFuHD

Saito, Shunsuke, et al. PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization. In CVPR, 2020.

OURS

Results on People-Snapshot dataset training on monocular videos

Results of reconstruction and view synthesis

People-Snapshot [1]

[1] Alldieck, Thiemo, et al. Video based reconstruction of 3d people models. In CVPR, 2018.

Ours

People-Snapshot [1] Ours

Results of reconstruction and view synthesis

People-Snapshot [1]

[1] Alldieck, Thiemo, et al. Video based reconstruction of 3d people models. In CVPR, 2018.

Ours

People-Snapshot [1] Ours

Summary

We propose structured latent codes, which combines SMPL model and NeRF and enables us to represent dynamic humans.

Summary

- We propose structured latent codes, which combines SMPL model and NeRF and enables us to represent dynamic humans.
- As a latent variable model, our method naturally integrates temporal information across video frames.

Summary

- We propose structured latent codes, which combines SMPL model and NeRF and enables us to represent dynamic humans.
- As a latent variable model, our method naturally integrates temporal information across video frames.
- Neural Body can reconstruct high-quality 3D human models from very sparse multi-view videos.

Limitations

• Since our model is built on the SMPL model, we have difficulty in handling performers with loose clothes.

Limitations

- Since our model is built on the SMPL model, we have difficulty in handling performers with loose clothes.
- Neural Body trains a network for each human subject, which takes about 12 hours and costs a lot of time.

Limitations

- Since our model is built on the SMPL model, we have difficulty in handling performers with loose clothes.
- Neural Body trains a network for each human subject, which takes about 12 hours and costs a lot of time.
- Our method has difficulty in generating high-quality novel views for unseen human poses.

Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

Sida Peng*, Junting Dong*, Qianqian Wang, Shangzhan Zhang

Qing Shuai, Hujun Bao, Xiaowei Zhou

Cornell University

Problem statement

Input: sparse-view videos

Output: animatable human models

Peng, Sida, et al. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In CVPR, 2021.

Related work: Neural Body

Image credit: Peng, et al. CVPR 2021.

Related work: Neural Body

Limitation

Cannot generalize to unseen human poses

Peng, Sida, et al. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In CVPR, 2021.

Pumarola, Albert, et al. D-nerf: Neural radiance fields for dynamic scenes. In CVPR, 2021.

Represent deformation fields as translational vector fields

Pumarola, Albert, et al. D-nerf: Neural radiance fields for dynamic scenes. In CVPR, 2021.

Limitations

I. Use networks to predict translational vectors, which cannot easily generalize to novel poses.

Pumarola, Albert, et al. D-nerf: Neural radiance fields for dynamic scenes. In CVPR, 2021.

Translational vector fields

Limitations

- I. Use networks to predict translational vectors, which cannot generalize to novel poses.
- 2. Optimizing neural radiance fields with vector fields is highly under-constrained.

Translational vector fields

Pumarola, Albert, et al. D-nerf: Neural radiance fields for dynamic scenes. In CVPR, 2021.

Represent deformation fields with LBS models

to output the deformation fields.

observation space

The blend weight fields are combined with human skeletons

canonical space

What are linear blend skinning models

Given T1 and T2, how do we transform the red point?

Image credit: https://skinning.org/direct-methods-slides.pdf

What are linear blend skinning models

Given T1 and T2, how do we transform the red point?

Image credit: https://skinning.org/direct-methods-slides.pdf

Two advantages of using LBS models

I. Human skeletons can be observed from images, and thus we only need to optimize the blend weight fields.

Two advantages of using LBS models

- Human skeletons can be observed from images, and thus we only need to optimize the blend weight fields.
- 2. The learned blend weight fields can be combined with new human skeletons to animate human models.

Overview of the proposed pipeline

How to learn the blend weight fields

observation space

It is ill-posed to learn the blend weight fields from scratch

How to learn the blend weight fields

Given an initial blend weight, we learn a residual vector, resulting in the neural blend weight.

 $\mathbf{w}_i(\mathbf{x}) = \operatorname{norm}(F_{\Delta \mathbf{w}}(\mathbf{x}, \boldsymbol{\psi}_i) + \mathbf{w}^{\mathrm{s}}(\mathbf{x}, S_i))$

Image credit: Bhatnagar, Bharat Lal, et al. NeurIPS 2020.

Learn canonical blend weights with consistency loss

for animation.

observation space

We need to learn the blend weights at the canonical space

canonical space

 	۳,
	۰.
1	
 4	
	ï
	i
:	i.
:	÷
:	÷
:	÷
	÷
	÷
	ï
	÷
	ï
:	÷
:	÷
:	-
:	-
:	÷
:	÷
:	÷
:	-
	-
:	
:	-
:	
:	-
:	-
1	- 1
 ()	÷
1 1	P.
1 1	
1.1	
 5	
 -	

Training

$$\begin{cases} \text{Image loss: } L_{\text{rgb}} = \sum_{r \in \mathcal{R}} \|\tilde{\mathbf{C}}_i(\mathbf{r}) - \mathbf{C}_i(\mathbf{r})\|_2 \\ \text{Consistency loss: } L_{\text{nsf}} = \sum_{\mathbf{x} \in \mathcal{X}_i} \|\mathbf{w}_i(\mathbf{x}) - \mathbf{w}^{\text{can}}(T_i(\mathbf{x}))\|_1 \end{cases} \end{cases}$$

Animation with the trained model

at this pose for animation.

Given an unseen human pose, we need to generate the blend weights

Learn blend weights under unseen human poses

The blend weights at the canonical space are used to train the blend weights under unseen human poses.

Quantitative comparison on novel pose synthesis

SSIM metric on Human3.6M dataset

[1] Thies, Justus, et al. Deferred neural rendering: Image synthesis using neural textures. In ACM TOG, 2019. [2] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020. [3] Peng, Sida, et al. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In CVPR, 2021.

SSIM metric on ZJU-MoCap dataset

Qualitative comparison on novel pose synthesis

Neural Textures [1]

NHR [2]

[1] Thies, Justus, et al. Deferred neural rendering: Image synthesis using neural textures. In ACM TOG, 2019.
[2] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.
[3] Peng, Sida, et al. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In CVPR, 2021.

Neural Body [3]

Qualitative comparison on novel pose synthesis

Neural Textures [1]

NHR [2]

[1] Thies, Justus, et al. Deferred neural rendering: Image synthesis using neural textures. In ACM TOG, 2019.
[2] Wu, Minye, et al. Multi-View Neural Human Rendering. In CVPR, 2020.
[3] Peng, Sida, et al. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In CVPR, 2021.

Neural Body [3]

Ours

Ablation studies: neural blend weight field

	PSNR	SSIM
Neural blend weight field	23.72	0.886
SMPL blend weight field	21.65	0.850

Table 3: Comparison between neural blend weight field and SMPL blend weight field on subject "S9".

Visualization of blend weight residuals

	PSNR	SSIM
Marker-based pose estimation	23.72	0.886
Marker-less pose estimation	22.27	0.858

Table 4: Comparison between models trained with human poses from marker-based and marker-less pose estimation methods on subject "S9".

Ablation studies: human pose accuracy

Ground Truth

Marker-less

Marker-based

Limitations

• Animatable NeRF adopts the LBS model, which can only represent articulated motions, making us difficult to handle human performers wearing loose clothes.

Limitations

- Animatable NeRF adopts the LBS model, which can only represent articulated motions, making us difficult to handle human performers wearing loose clothes.
- Animatable NeRF cannot generalize across different human subjects.

Limitations

- Animatable NeRF adopts the LBS model, which can only represent articulated motions, making us difficult to handle human performers wearing loose clothes.
- Animatable NeRF cannot generalize across different human subjects.
- The animation stage requires us to optimize neural blend weight fields for novel human poses, which is slow.

4-view video

Thanks!

I. Project page: <u>https://zju3dv.github.io/neuralbody</u>

2. Project page: https://zju3dv.github.io/animatable_nerf

Free-viewpoint video