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Generative Adversarial Networks (GAN)

Img src: https://github.com/NVlabs/stylegan
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Generative Adversarial Networks (GAN)

Img src: https://github.com/NVlabs/stylegan, https://genforce.github.io/interfacegan/
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learn 3D semantics 
from 2D images
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Do 2D GANs Know 3D Shape? 
Unsupervised 3D shape reconstruction from 2D Image GANs
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GAN2Shape

Img src: Pan Xingang et.al. ICLR2021

Key idea: if reconstructed shapes are incorrect, rendering new images from them will lead to unnatural 
results. We can use GANs to correct these unnatural results, which can be used as supervision.
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GAN2Shape Pipeline

Img src: Pan Xingang et.al. ICLR2021
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GAN2Shape Pipeline

Img src: Pan Xingang et.al. ICLR2021
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GAN2Shape Pipeline

Img src: Pan Xingang et.al. ICLR2021
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Step 1 → Step 2 → Step 3 → Step 1 → …



GAN2Shape Results

Img src: Pan Xingang et.al. ICLR2021
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2D GANs indeed know 3D space to some extent.
Why stop at 2D GANs?
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2D 
Feature Maps

3D-aware Image GAN
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𝑧2D GAN:

Generator

3D 
Representations

𝑧3D-aware GAN:

Generator
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3D Representations: NeRF
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Img src: Ben Mildenhall et.al. ECCV2020



NeRF-GAN: NeRF as intermediate representation
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• Pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis (CVPR 2021)
• GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis (NeurIPS 2020)



NeRF-GAN: Issues
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learned shapes are not smooth and accurate!



NeRF-GAN: Issues
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learned shapes are not smooth and accurate!

• NeRF has no concept of surface, volume densities are diffused in the space.
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Generative Occupancy Fields for 3D Surface-Aware Image Synthesis
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GOF

Volume Rendering Equation in NeRF-GAN:

Intermediate alpha values
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GOF

Resemble the occupancy representation that
ensures good object surfaces inherently.

Volume Rendering Equation in NeRF-GAN:

Intermediate alpha values
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GOF
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object surface

Root-finding:
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GOF: shrink sampling region

Shrinking sampling region during training:
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GOF Results
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GOF Results
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GOF Results
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GOF Results: Surface Rendering

BFM CelebA Cats

Left side: volume rendering; Right side: surface rendering



NeRF-GAN: Issues
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learned shapes are not smooth and accurate!

• NeRF has no concept of surface, volume densities are diffused in the space.
• NeRF can render good images without learning accurate shapes, i.e, the shape-color ambiguity.
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A Shading-Guided Generative Implicit Model for 
Shape-Accurate 3D-Aware Image Synthesis
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ShadeGAN

The learned shapes should look realistic not only from different views (multi-view constraint), but also from different 
lightings (multi-lighting constraint). Inaccurate shapes would be more clearly revealed, as shading is sensitive to surface 
normals.
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ShadeGAN
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ShadeGAN
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Lambertian shading:

Ambient diffuse light direction

Calculate albedo:

Surface normal:
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ShadeGAN Results
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ShadeGAN Results
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ShadeGAN Results
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ShadeGAN Results: Real Image Editing

Real Image Reconstruction 3D Mesh Normal Albedo Diffuse Shading

View Synthesis Relighting
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What’s next?
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Future Work

• Shapes with more fine-grained details.

• Shapes of more complex categories.

• Improved learning efficiency and robustness.

• Application of these GANs in downstream tasks.

• …
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Advertisement

智能数字人研究中心

I’m looking for full-time researchers and 
part-time interns in the related fields of 
Digital Human and Metaverse!
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Thank you!

GAN2Shape GOF ShadeGAN


