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Novel View Synthesis
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Applications

* VR Tour
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https:/ /realsee.com/website / product/ vr

Matterport



Applications

* Free-viewpoint video & bullet time effect

Intel True View Dance Smash, Mango TV



Applications

e Immersive tele-communication

Google Starline
https:/ /blog.google / technology / research / project-starline /



IBR spectrum

Denser views Sparser views
- Less geometry More geometry >
Rendering with Rendering with Rendering with
no geometry implicit geometry explicit geometry

Light field Lumigraph LDIs Texture-mapped models
Concentric mosaics Transfer methods 3D warping
Mosaicing View morphing View-dependent geometry
View interpolation View-dependent texture

Shum, H. Y., Chan, S. C., & Kang, S. B. (2008). Image-based rendering. Springer Science & Business Media.



Learned texture-mapped meshes

Meshes reconstructed by
multi-view stereo (MVS) algorithms

Source views Target view

Surpoouy

|

Learned appearance by
warping/aggregating source views

Riegler, Gernot, and Vladlen Koltun. "Stable view synthesis." CVPR. 2021.



Learned texture-mapped meshes

* Advantages
* Relatively scalable ¥
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* Handles sparse views well
* The learned texture model is generalizable Ee *F
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* Limitations
* Limited by the performance of MVS algorithms



Volumetric Representations

Images & poses DeepVoxels
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Multiview Capture (Section 8) Encoder + Decoder (Section 4+5) Ray Marching (Section 6)
DeepVoxels Neural Volumes

Construct a discretized 3D volume as the scene representation
(DeepVoxels: feature volume; Neural Volumes: RGB-a volume)



Volumetric Representations

* Advantages
 Can handle partially-transparent objects like smoke
* Learned end-to-end (does not require proxy geometry as input)

* Limitations
* Does not scale well to large scenes
* Scene-specific (needs to train a model for each scene specifically)



Multi-Plane Images (MPI)

 Multi-Plane Image (MPI) is a set of front-parallel RGBA planes at fixed depths
\ " TRANING " N

Layers at

. fixed depths,
eachis an
RGBA image.

Reference viewpoint V Q Novel viewpoint YouTube Camera motion Multiplane Images

\ videos clips (MPIs) j

Tinghui Zhou, et al. Stereo Magnification: Learning View Synthesis using Multiplane Images, In SIGGRAPH 2018



Multi-Plane Images (MPI)

* Advantages
* Learned end-to-end
* Can handle partially-transparent and specular objects, and thin structures
* Generalizable
* Real-time rendering

* Limitations
* Only allows small viewpoint changes
* Memory expensive




Coordinate-based neural representations

* Neural Radiance fields (NeRF)

Multi-layer Perceptron

(MLP)
5D Input Output
Position + Direction Color + Density
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Neural Radiance fields (NeRF)

* Render images by volume rendering

Rendering model for ray r(t) = o + td:
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How much light is blocked earlier along ray:
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How much light is contributed by ray segment i:

a; =1 — e 7%



Neural Radiance fields (NeRF)

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
r» (xyz, <9¢)—>|:|[II]—> RGBg)\ /\
/ % Ray 1 ot 2
/ﬂ }\} /ﬂ } LR
(a) (b) (c) (d)

Training using L2 Loss on image colors



(NeRF)

Neural Radiance fields




Neural Radiance fields (NeRF)

* Advantages

* Impressive view synthesis results (handles complex geometry and
view dependent effects well)

* Very compact (5MB vs. LLFF 15GB)
* Strong multi-view consistency

* Limitations
* Scene-specific, optimizing a NeRF for a scene needs ~1 day
* Low rendering speed

Mildenhall, Ben, et al. "Local light field fusion: Practical view synthesis with prescriptive sampling guidelines." TOG 38.4 (2019): 1-14.



Improving & Extending NeRF

* Improving training / rendering speed
* Generalizing NeRF

* Extending NeRF to dynamic scenes

* Relighting with NeRF

* Generation with NeRF



Our proposed method: IBRNet

IBRNet generates continuous scene radiance on-the-fly from source views for
rendering novel views.

Inference (on unseen scenes):

training
 IBRNet |
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* Generalizes well to novel scenes
 Continuous representations that allow high-resolution rendering

Wang, Qiangian, et al. "lbrnet: Learning multi-view image-based rendering." CVPR. 2021.



Our intuitions

* Instead of memorizing the scene, learn a general view interpolation
function

* Replaces a trained per-scene MLP with on-the-fly multi-view
stereo matching and image-based rendering



Pipeline Overview

To synthesize a target view:

& extract 2D features

04

[ Produce volume densities and }

[ Identify nearby source views }

colors (IBRNet)

104

[ Volume rendering }

[_. Target view
source view



Volume density prediction

g — o [ PointNet-like J o

c ] MLP
Image density
features feature

v

Checks photo consistency

On-surface<->high consistency<->high density
Free space <->low consistency <->low density

[_. Target view
source view



Volume density prediction
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Image density

densit
features feature y

Doesn’t work well!

Photo-consistency can be noisy and ambiguous

long-range contextual information?

[_. Target view
source view



Depth prediction in traditional MVS
W i

Select window in Project into neighbouring image
reference image along epipolar line

o |
=

Locate matching window using
maximum NCC score
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Depth

Figure 3.3: Winner-takes-all strategy for depthmap reconstruction. The figure il-
lustrates a process to estimate a depth value for a pixel highlighted by a black
rectangle in the left image. The global maximum of the photo-consistency function
such as the NCC score is chosen to be the reconstructed depth for the pixel.



Volume density prediction

g % [> [ PointNet-like J [> —

c L ] MLP
Image density
features feature
% Communicate J%
density volume
features densities

Aggregate information

r= 1
.-+ Target view along the entire ray
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Ray Transformer
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density volume
features densities

Positional encoding +
Multi-head self attention

allows arbitrary number of input samples



Ray transtformer comparison

w /o ray transformer w/ ray transformer groundtruth

Mean PSNR: 21. 31 Mean PSNR: 25.13



Improving temporal visual consistency
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Improving temporal visual consistency

g % [> [ PointNet-like J [> —

cr_ ] MLP
Image density
features feature
Weighted pooling
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j=1...N

£
w; (d, dz) = — ,
>, w5(d,dj)

[_. Target view
source view



Color prediction
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Volume Rendering and Training
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Training datasets
o Multi-view posed images

GoogleResearch GoogleResearch GoogleResearch GoogleResearch

T e ® &
Google scanned objects RealEstate10K Forward facing scenes

(Collected by LLFF authors and ourselves)



Evaluation

Directly apply the pretrained model (no per-scene optimization)

Inference (on unseen scenes):
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Source views Novel view

Finetuning (per-scene optimization)
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Source views finetuning Novel view




Baselines

o No per-scene optimization: LLFF

AANASSS

Fast and easy handheld capture with guideline: Promote sampled views to local light field Blend neighboring local light fields
closest object moves at most D pixels between views via layered scene representation to render novel views

« Per-scene optimization: SRN, Neural Volumes, NeRF

Mildenhall, Ben, et al. "Local light field fusion: Practical view synthesis with prescriptive sampling guidelines." TOG 38.4 (2019): 1-14.



Evaluation

e No per-scene optimization: Ours outperforms prior state-of-the-art method LLFF
PSNRT
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e Per-scene optimization: Ours finetuned is competitive to NeRF
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Mildenhall, Ben, et al. "Local light field fusion: Practical view synthesis with prescriptive sampling guidelines." TOG 38.4 (2019): 1-14.



Video Comparison of
LLFF and Ours









Video Comparison of
NeRF and Ours Finetuned
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IBRNet Summary & Analysis

 Renders target views by generating colors and densities in the space on
the fly using nearby source views

* Compared to NeRF:

* Generalizes to novel scenes (no per scene optimization required)
* More scalable (local working set)

* View-dependent geometry (vs. NeRF view independent geometry)

* Compared to LLFF:

* Allows continuous sampling in the scene space
* Better multi-view consistency

* Low rendering speed



Comparison with concurrent work

Input pixelNeRF Input pixelNeRF Input pixelNeRF Input pixelNeRF

-7 Fom ®&v=m PP

2 Input Views pixelNeRF 2 Input Views pixelNeRF

| Still uses coordinate-based networks

Hi ﬂ > 2P g"g > W& 2 Uses category-level (object-level)
priors (does not generalize to
arbitrary scenes)

3. Focus on sparse views

—_

3 Input Views pixelNeRF 3-view NeRF

PixelNeRF

Yu, Alex, et al. "pixelnerf: Neural radiance fields from one or few images." CVPR. 2021.

Trevithick, Alex, and Bo Yang. "Grf: Learning a general radiance field for 3d representation and rendering." ICCV. 2021.

Jang, Wonbong, and Lourdes Agapito. "Codenerf: Disentangled neural radiance fields for object categories.”ICCV. 2021.



Future directions

* Improving rendering speed
 Extending to dynamic scenes

Instant Neural Graphics Primitives: training NeRF in 5 seconds!

I “"

Miuller, Thomas, et al. “Instant Neural Graphics Primitives with a Multiresolution Hash Encoding”



Thank you!



