Generalizable Neural Rendering for Novel View Synthesis

Qianqian Wang Cornell University

Novel View Synthesis

Applications

• VR Tour

Matterport

https://realsee.com/website/product/vr

Applications

• Free-viewpoint video & bullet time effect

Intel True View

Dance Smash, Mango TV

Applications

• Immersive tele-communication

Google Starline https://blog.google/technology/research/project-starline/

IBR spectrum			
Denser vie	ws S _I	parser views	
Less geomet	try Mo	ore geometry	
Rendering with no geometry	Rendering with implicit geometry	Rendering with explicit geometry	
Light field Lumigrap	h	LDIs Texture-mapped mode	els
Concentric mosaics	Transfer methods	3D warping	
Mosaicing	View morphing	View-dependent geometry	
View interpolation		View-dependent texture	

Shum, H. Y., Chan, S. C., & Kang, S. B. (2008). *Image-based rendering*. Springer Science & Business Media.

Learned texture-mapped meshes

Source views

Meshes reconstructed by multi-view stereo (MVS) algorithms

Target view

Learned appearance by warping/aggregating source views

Riegler, Gernot, and Vladlen Koltun. "Stable view synthesis." CVPR. 2021.

Learned texture-mapped meshes

Advantages

- Relatively scalable
- Handles sparse views well
- The learned texture model is generalizable

• Limitations

• Limited by the performance of MVS algorithms

Volumetric Representations

Construct a discretized 3D volume as the scene representation (DeepVoxels: feature volume; Neural Volumes: RGB- α volume)

Volumetric Representations

Advantages

- Can handle partially-transparent objects like smoke
- Learned end-to-end (does not require proxy geometry as input)

• Limitations

- Does not scale well to large scenes
- Scene-specific (needs to train a model for each scene specifically)

Multi-Plane Images (MPI)

• Multi-Plane Image (MPI) is a set of front-parallel RGBA planes at fixed depths

Tinghui Zhou, et al. Stereo Magnification: Learning View Synthesis using Multiplane Images, In SIGGRAPH 2018

Multi-Plane Images (MPI)

Advantages

- Learned end-to-end
- Can handle partially-transparent and specular objects, and thin structures
- Generalizable
- Real-time rendering

• Limitations

- Only allows small viewpoint changes
- Memory expensive

Coordinate-based neural representations

• Neural Radiance fields (NeRF)

continuous volumetric scene representation

• Render images by volume rendering

How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

Training using L2 Loss on image colors

Advantages

- Impressive view synthesis results (handles complex geometry and view dependent effects well)
- Very compact (5MB vs. LLFF 15GB)
- Strong multi-view consistency

• Limitations

- Scene-specific, optimizing a NeRF for a scene needs ~1 day
- Low rendering speed

Mildenhall, Ben, et al. "Local light field fusion: Practical view synthesis with prescriptive sampling guidelines." TOG 38.4 (2019): 1-14.

Improving & Extending NeRF

- Improving training / rendering speed
- Generalizing NeRF

•

- Extending NeRF to dynamic scenes
- Relighting with NeRF
- Generation with NeRF

Our proposed method: IBRNet

IBRNet generates **continuous** scene radiance **on-the-fly** from source views for rendering novel views.

- Generalizes well to novel scenes
- Continuous representations that allow high-resolution rendering

Wang, Qianqian, et al. "Ibrnet: Learning multi-view image-based rendering." CVPR. 2021.

Our intuitions

- Instead of memorizing the scene, learn a general view interpolation function
- Replaces a trained per-scene MLP with on-the-fly multi-view stereo matching and image-based rendering

Pipeline Overview

Volume density prediction

□ source view

Volume density prediction

☐ Target view □ source view

Depth prediction in traditional MVS

Figure 3.3: Winner-takes-all strategy for depthmap reconstruction. The figure illustrates a process to estimate a depth value for a pixel highlighted by a black rectangle in the left image. The global maximum of the photo-consistency function such as the NCC score is chosen to be the reconstructed depth for the pixel.

Volume density prediction

Ray Transformer

allows arbitrary number of input samples

Ray transformer comparison

w/o ray transformer Mean PSNR: 21. 31 w/ ray transformer Mean PSNR: 25.13 groundtruth

Improving temporal visual consistency

Improving temporal visual consistency

Color prediction

Volume Rendering and Training

Training datasets

• Multi-view posed images

Google scanned objects

. . .

RealEstate10K

Forward facing scenes (Collected by LLFF authors and ourselves)

Evaluation

• Directly apply the pretrained model (no per-scene optimization)

• Finetuning (per-scene optimization)

Baselines

• No per-scene optimization: LLFF

Fast and easy handheld capture with guideline: closest object moves at most D pixels between views

Promote sampled views to local light field via layered scene representation

Blend neighboring local light fields to render novel views

• Per-scene optimization: SRN, Neural Volumes, NeRF

Mildenhall, Ben, et al. "Local light field fusion: Practical view synthesis with prescriptive sampling guidelines." TOG 38.4 (2019): 1-14.

Evaluation

• No per-scene optimization: Ours outperforms prior state-of-the-art method LLFF

• Per-scene optimization: Ours finetuned is competitive to NeRF

Mildenhall, Ben, et al. "Local light field fusion: Practical view synthesis with prescriptive sampling guidelines." TOG 38.4 (2019): 1-14.

Video Comparison of LLFF and **Ours**

LLFF

Ours

LLFF

Ours

Video Comparison of **NeRF** and **Ours Finetuned**

NeRF

Ours Finetuned

NeRF

Ours Finetuned

IBRNet Summary & Analysis

- Renders target views by generating colors and densities in the space on the fly using nearby source views
- Compared to NeRF:
 - Generalizes to novel scenes (no per scene optimization required)
 - More scalable (local working set)
 - View-dependent geometry (vs. NeRF view independent geometry)

• Compared to LLFF:

- Allows continuous sampling in the scene space
- Better multi-view consistency
- Low rendering speed

Comparison with concurrent work

PixelNeRF

- 1. Still uses coordinate-based networks
- 2. Uses category-level (object-level) priors (does not generalize to arbitrary scenes)
- 3. Focus on sparse views

Yu, Alex, et al. "pixelnerf: Neural radiance fields from one or few images." CVPR. 2021.

Trevithick, Alex, and Bo Yang. "Grf: Learning a general radiance field for 3d representation and rendering." *ICCV*. 2021. Jang, Wonbong, and Lourdes Agapito. "Codenerf: Disentangled neural radiance fields for object categories." *ICCV*. 2021.

Future directions

- Improving rendering speed
- Extending to dynamic scenes

Instant Neural Graphics Primitives: training NeRF in 5 seconds!

Müller, Thomas, et al. "Instant Neural Graphics Primitives with a Multiresolution Hash Encoding"

Thank you!