

Robust Tightly-Coupled Visual-Inertial Odometry with Pre-built Maps in High Latency Situations

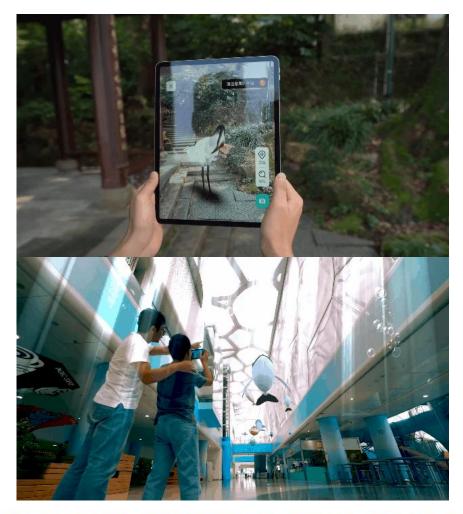
Hujun Bao¹, Weijian Xie^{1,2}, Quanhao Qian², Danpeng Chen^{1,2,3},

Shangjin Zhai², Nan Wang^{2,3}, and Guofeng Zhang^{1*}

¹State Key Lab of CAD&CG, Zhejiang University ²SenseTime Research ³Tetras.AI

Image: Motivation

With the rise of the digital twin and high-precision maps, the demand for AR and VR of large scenes combined with high-precision maps gradually becomes prosperous.



Motivation

	GNSS	VIO/SLAM	Global Localization Algorithm based on the pre-built map
Advantage	Global positionNo need for the pre-built map	Smooth trajectoryLocal high-precision pose	Global high-precision pose
Disadvantage	Cannot work in indoor scenesLow-precision	• Accumulate drift	High algorithm complexityUnsmooth trajectory

• An affordable way to combine the advantages of VIO and pre-built maps is to fuse the pre-built map into the VIO tracking process.

Image: Motivation

Loosely coupled methods easily lead to jumpness of trajectory, while tightly coupled methods do not.

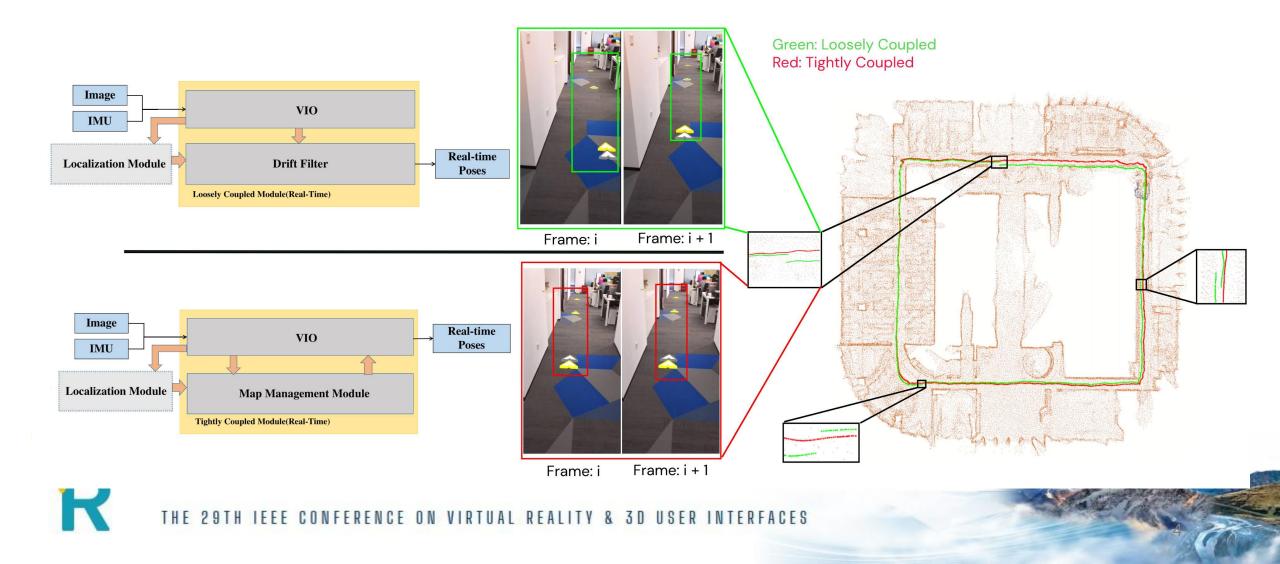
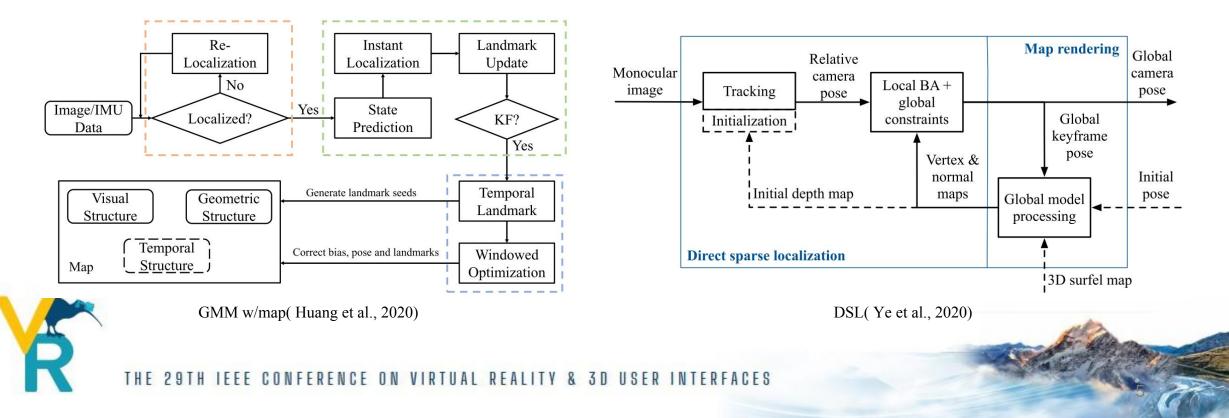


Image: Motivation

IEEE

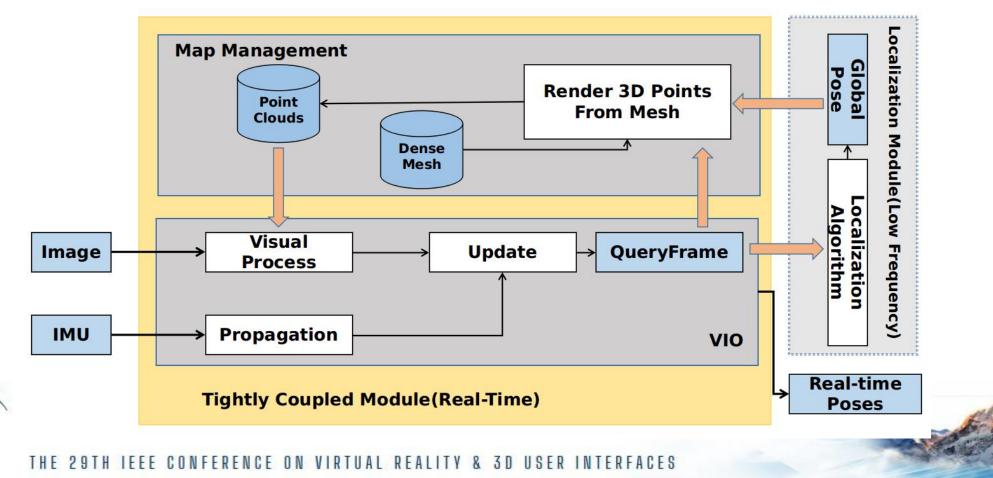
The weakness of previous methods:

- Sensitive to map noise and scenarios changes.
- It is challenging to achieve good performance under the condition of localization with time delay and low frequency.



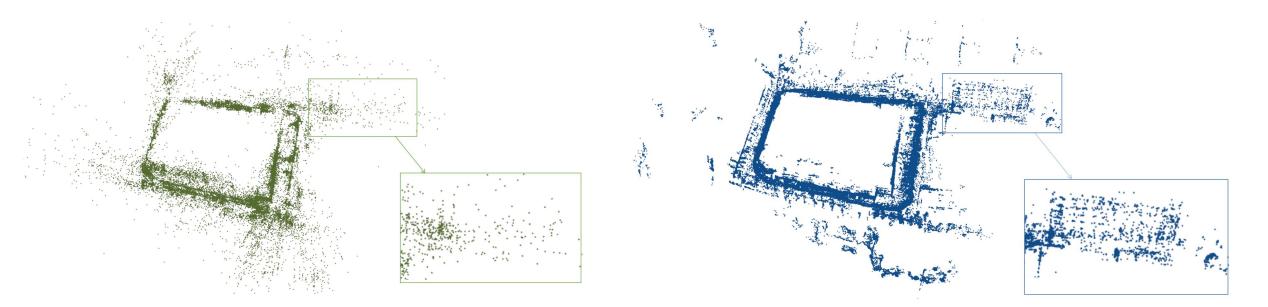
Contribution

- A complete scheme to generate the association between the pre-built map and local features
- Different constraints for different types of map points
- A degeneration state recovery strategy



Structure Extraction

- Extract the position and normal of ORB feature from the dense mesh.
- The descriptor of 3D point comes from the query image.
- The points obtained by the real-time pose are defined as local map points.
- The points obtained by the global localization pose are defined as global map points.



Point clouds generated by **2D-3D** matches

Point clouds generated by ray casting

ΤH

Multi-frame

Check

Xi

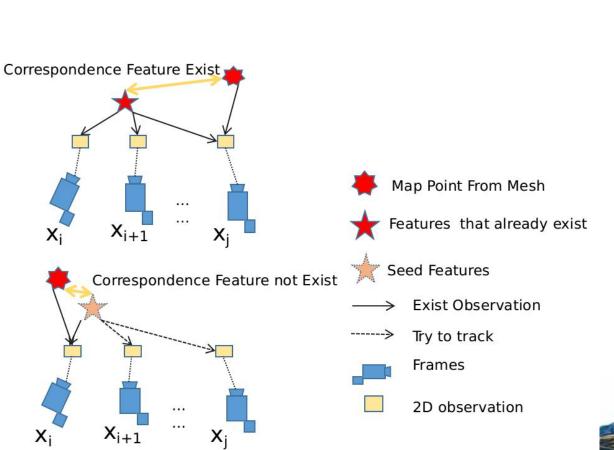
Map Point Cloud

Project to

Match

Each map point will correspond to a local feature. •

- Only when there are enough activate map points • will we add them to VIO's status updates as constraints.
- We will re-check activate map points in every frame.



Activate Map

Point

Struct Check

□Visual Processing

Latest Frame

□Visual-Inertial State Estimate

T_{k-1}

P4

Tk

Vk

 \mathbf{b}_{k}

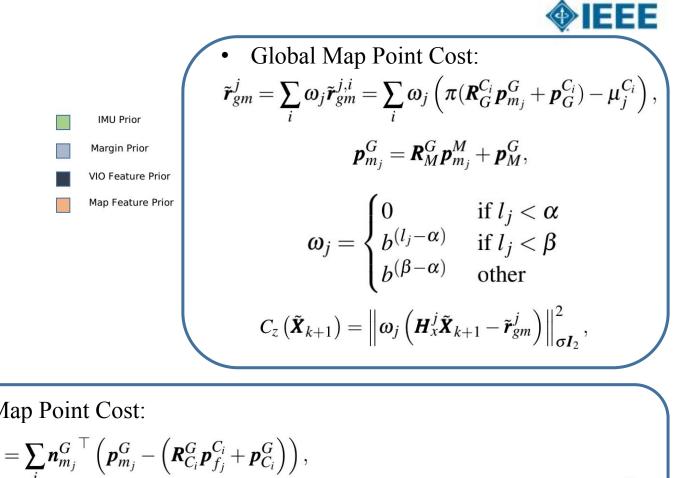
.

P2

. . . .

•• (T_{k-2})

 T_1



• Local Map Point Cost:

$$\tilde{\boldsymbol{r}}_{n}^{j} = \sum_{i} \tilde{\boldsymbol{r}}_{n}^{j,i} = \sum_{i} \boldsymbol{n}_{m_{j}}^{G^{\top}} \left(\boldsymbol{p}_{m_{j}}^{G} - \left(\boldsymbol{R}_{C_{i}}^{G} \boldsymbol{p}_{f_{j}}^{C_{i}} + \boldsymbol{p}_{C_{i}}^{G} \right) \right),$$

$$\boldsymbol{n}_{m_{j}}^{G} = \boldsymbol{R}_{M}^{G} \boldsymbol{n}_{m_{j}}^{M},$$

$$\boldsymbol{p}_{f_{j}}^{C_{i}} = \boldsymbol{R}_{G}^{C_{i}} \left(\boldsymbol{R}_{C_{k}}^{G} \left(\boldsymbol{d}_{k} K^{-1} \pi^{-1} \left(\boldsymbol{\mu}_{j}^{C_{k}} \right) \right) + \boldsymbol{p}_{C_{k}}^{G} \right) + \boldsymbol{p}_{G}^{C_{i}},$$

$$\boldsymbol{r}_{G}^{L} = \boldsymbol{r}_{G}^{C_{i}} \left(\boldsymbol{R}_{C_{k}}^{G} \left(\boldsymbol{d}_{k} K^{-1} \pi^{-1} \left(\boldsymbol{\mu}_{j}^{C_{k}} \right) \right) + \boldsymbol{p}_{C_{k}}^{G} \right) + \boldsymbol{p}_{G}^{C_{i}},$$

INFERENCE ON VIRTUAL REALITY & 3D USER INTERFACES **THE 29**

Map Visual Factor

VIO Feature Factor

VIO Feature

Map Feature

Degeneration Analysis

• System Recovery

$$\begin{aligned} \boldsymbol{x}_{m_{j}}^{C_{i}} &= \pi \left(K \left(\boldsymbol{R}_{G}^{C_{i}} \left(\boldsymbol{R}_{M}^{G} \boldsymbol{p}_{m_{j}}^{M} + \boldsymbol{p}_{M}^{G} \right) + \boldsymbol{p}_{G}^{C_{i}} \right) \right), \\ \min_{\hat{\boldsymbol{q}}_{M}^{G}, \hat{\boldsymbol{p}}_{M}^{G}} \left\{ \sum \left\| \boldsymbol{q}_{i}^{G} \otimes \boldsymbol{q}_{i}^{M-1} \otimes \hat{\boldsymbol{q}}_{M}^{M} \right\|_{2} + \sum \left\| \boldsymbol{p}_{i}^{G} - \hat{\boldsymbol{q}}_{M}^{G} \boldsymbol{p}_{i}^{M} - \hat{\boldsymbol{p}}_{M}^{G} \right\|_{2} \right\}, \end{aligned}$$
(16)
$$entropy = 0.5 \times \log \left((2\pi e)^{k} \det (\boldsymbol{H}_{rel}) \right). \\ \bullet norm \left(\boldsymbol{p}_{M}^{G} - \hat{\boldsymbol{p}}_{M}^{G} \right) > p_{threshold} \\ \bullet entropy > \lambda_{e} \end{aligned}$$

• The VIO module needs to be initialized independently before using the constraints of the pre-built map. After the initialization of the VIO, the system will directly fall into a degeneration state.

Dataset	V101	V102	V103	V201	V202	V203							
BVIO	0.055	0.064	0.086	0.054	0.106	0.129							
RTC-VIO	0.020	0.023	0.035	0.021	0.027	0.047							
OpenVINS	0.050	0.084	0.078	0.068	0.064	0.081			DTC	ODD	VINS-		
VINS-Mono	0.039	0.037	0.087	0.076	0.105	0.330	Dataset	BVIO	RTC- VIO	ORB (online)	Mono	GMM	DSL
(loop)	0.039	0.057	0.087	0.070	0.105	0.330			VIO	(onnie)	(loop)		
ORB (online)	0.427	1.176	0.985	0.417	0.864	2.308	indoor	0.230	0.023	0.826	0.159	-	0.050
GMM	0.023	0.057	0.058	0.047	0.040	0.202	indoor	0.062	0.020	3.300	0.078	0.068	0.060
W/ Map	0.025	0.037	0.038	0.047	0.040	0.392	patial						
DSL	0.025	0.024	0.045	0.026	0.022	0 102	outdoor	2.253	0.19	14.702	2.963	25.463	0.383
(left cam)	0.035	0.034	0.045	0.026	0.023	0.103							
MSCKF	0.056	0.055	0.007	0.060	0.000	0 1 4 0							
(w/Map)	0.056	0.055	0.087	0.069	0.089	0.149							
ORB (offline)	0.041	0.017	0.029	0.051	0.017	0.030							

• The experiments on EurocMav datasets and simulation datasets show that our method can achieve higher accuracy compared with state-of-the-art methods.

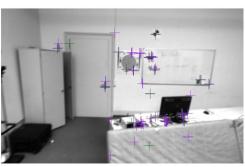
Dataset	V101	V102	V103	V201	V202	V203
GMM w/ wrong map	0.469	0.366	0.413	0.851	0.831	1.987
RTC-VIO w/ wrong map	0.029	0.039	0.037	0.022	0.032	0.052
GMM w/ wrong map & GT	0.422	0.399	0.309	0.758	0.803	0.596
RTC-VIO w/ wrong map & GT	0.023	0.023	0.033	0.019	0.028	0.041

Dataset	σ :0	σ : 0.1	σ : 0.3	σ : 0.5	σ : 1.0
indoor	0.023	0.049	0.076	0.084	0.148
indoor patial	0.020	0.026	0.036	0.047	0.054
outdoor	0.190	0.212	0.215	0.217	0.258

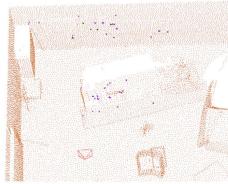
DSL fails in all three synthetic datasets when we add standard deviation $\sigma = 0.1$ m to the pre-built map.

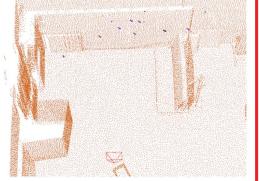
• Compared with GMM and DSL, our method is more robust to the changes of scenarios and the noise of the pre-built maps.

• Our method can filter out the outliers introduced by environmental changes, while the GMM's algorithm cannot.



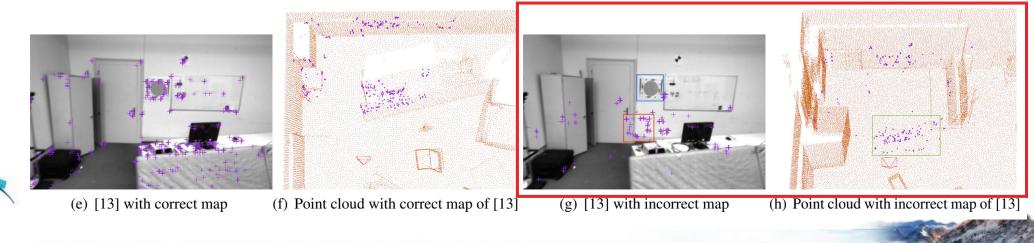
(a) Our method with correct map





(b) Point cloud with correct map of our (c) Our method with incorrect map method

(d) Point cloud with incorrect map of our method



• (1)(2) show that the number of point clouds from the pre-built map will significantly affect the coupled result.

	LP	GP	stag M	ges S	R	LR	indoor	indoor partial	outdoor
1	\checkmark	\checkmark	\checkmark	$\overline{\checkmark}$	-	-	0.089	0.060	0.226
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		0.307	0.135	0.456
3	\checkmark	\checkmark	-	\checkmark		.	0.096	0.085	0.227
4	\checkmark	\checkmark	\checkmark	-	-	-	0.098	0.078	0.239
(5)	\checkmark	\checkmark	-	-	-	-	0.102	0.082	0.253
6	-	\checkmark	\checkmark	\checkmark		-	0.102	0.051	0.270
$\overline{\mathcal{O}}$	\checkmark	_	\checkmark	\checkmark		-	0.162	0.094	1.680
8	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	0.105	0.244	0.331

• ①⑥⑦ show that both local map points and global map points can improve the accuracy of the coupled algorithm, among which global map points are more helpful for improving the accuracy.

2			stag	ges		indoor	indoor	outdoor	
	LP	GP	Μ	S	R	LR	muoor	partial	outdoor
1	\checkmark	\checkmark	\checkmark	\checkmark	-	-	0.089	0.060	0.226
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	0.307	0.135	0.456
3	\checkmark	\checkmark	-	\checkmark		10 - 34	0.096	0.085	0.227
4	\checkmark	\checkmark	\checkmark	-	-	-	0.098	0.078	0.239
(5)	\checkmark	\checkmark	-	-	-	-	0.102	0.082	0.253
6	-	\checkmark	\checkmark	\checkmark		10 - 34	0.102	0.051	0.270
$\overline{\mathcal{O}}$	\checkmark	-	\checkmark	\checkmark	-		0.162	0.094	1.680
8	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	0.105	0.244	0.331

• 168 show that using reprojection constraints for local map points will take a negative effect.

			stag	ges			indoor	indoor	outdoor
	LP	GP	Μ	S	R	LR	maoor	partial	outdoor
1	\checkmark	\checkmark	\checkmark	\checkmark	-	-	0.089	0.060	0.226
2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	0.307	0.135	0.456
3	\checkmark	\checkmark	-	\checkmark			0.096	0.085	0.227
4	\checkmark	\checkmark	\checkmark	-	-		0.098	0.078	0.239
(5)	\checkmark	\checkmark	-	-	-	-	0.102	0.082	0.253
6	-	\checkmark	\checkmark	\checkmark	-	1. 	0.102	0.051	0.270
$\overline{\mathcal{O}}$	\checkmark	-	\checkmark	\checkmark			0.162	0.094	1.680
8	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	0.105	0.244	0.331

Table 8: Evaluation on general localization performanceon synthetic dataset with APE (m) under different time delay. The interval of sending localization request is set to 1000ms.

Delay (ms)	ind	oor		oor tial	outdoor		
(1115)	W	w/o	W	w/o	W	w/o	
200	0.035	0.037	0.037	0.036	0.267	0.300	
400	0.041	0.049	0.041	0.037	0.284	0.327	
800	0.077	0.088	0.049	0.046	0.378	0.330	
1200	0.121	0.146	0.047	0.054	0.458	0.567	

Table 9: Evaluation on ablation of local map point constraints with APE (m) under different localization frequencies. The latency of localization pose is set to 400ms.

Interval	indoor		indoor	partial	outdoo	r
(ms)	W	w/o	W	w/o	W	w/o
1000	0.041	0.049	0.041	0.037	0.284	0.327
2000	0.060	0.065	0.043	0.042	0.319	0.368
4000	0.064	0.068	0.043	0.052	0.528	0.541
8000	0.076	0.105	0.052	0.055	0.528	0.541
12000	0.092	0.129	0.061	0.056	0.527	0.588

Still better than BVIO!

Video 1: Our method vs ARCore-LC on indoor scene Video 2: Our method vs ARCore-LC on outdoor scene Video 3: Our method on V103_difficult Video 4: Comparations on V103_difficult Video 5: Our method on synthetic indoor scene

Thank you!

xieweijian@sensetime.com

