The One-Man-Crowd:

Single User Generation of Crowd Motions Using Virtual Reality

Tairan Yin, Ludovic Hoyet, Marc Christie, Marie-Paule Cani, and Julien Pettré

One man to create a crowd would be like ...

The making and the use of crowd data

Real data from real experiments

Collection through controlled experiments

Seyfried et al. 2008

Cao et al. 2017

Lemercier et al. 2012

Such data is scare due to ...

- Logistical difficulty
- Ethical concerns
- Tracking difficulty occlusion
- Time cost
- etc.

Synthetic data from simulation

Emergent patterns:

- Each person makes local decision
- The collective motions present patterns

Emergent patterns of flocking birds

Simulation with autonomous agents

- Unrealistic local behaviors
- Unrealistic emergent patterns

Unrealistic behaviors in video game

The One-Man-Crowd (OMC)

General Goal:

- Explore a novel way to generate crowd dataset
- Avoid the difficulties of organizing real crowd experiments
- Avoid the use of autonomous agents
- Take advantage of VR's controllability

Solution:

- Immerse one user in VR and generate a crowd by himself/herself

The One-Man-Crowd

Real-world VR situation situation Blue outline: first to move Yellow outline: last to move Head position Trajectories First-person on 2D plane view

What is OMC's performance?

S2N:

Single-user-to-N-characters

→ a single user needs to play N trials

Hypotheses:

- Individual behaviors:

Qualitatively similar, quantitatively different

- Emergent patterns:

Realistic emergent pattern can be produced

What is OMC's performance?

Verification:

- 1. We replicated 3 classical experiments in VR
- 2. We replicated the data analysis of these experiments
 - Reaction time
 - Personal space
 - Density-speed relation
 - Etc.
- 3. We evaluated the emergent patterns

Unidirectional flow Lemercier et al. 2012

Bottleneck
Seyfried et al. 2008

Inflow Ezaki et al. 2015

Unidirectional Flow

Animation (One S2N result)

Blue: first to be generated Yellow: last to be generated

Head Position

Emergent pattern: stop-and-go wave

Bottleneck

One S2N result

Emergent pattern: lane formation

Another S2N result

Specific pattern: single lane resulted from low behavioral variety

Inflow

Each point represents one character's final position

A different procedure

N2N:

N-user-to-N-characters

→ N user, each plays only 1 trial

Hypotheses:

- Collective behaviors:

S2N & N2N differ on behavioral diversity

N2N result

• 11

The One-Man-Crowd paradigm ...

- Is able to create crowd dataset with full body animation
- Has successfully replicated well known emergent patterns
- Has 2 different procedure (S2N & N2N)
 S2N introduces bias from the lack of behavioral variety, N2N is able to compensate

Thank you

Can OMC Handle Multi-directional Flow?

