Learning Deep Generative Models
for 3D Shape Structures
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Even for 3D shapes ...
A N A
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Generating 3D shapes
A N\ o

3D-GAN [Wu et al. NIPS 2016]
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Today
D AN

- What is special in generating 3D shapes?

- What is a good generative model for 3D shapes?

- What do we learn from building such a model?
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SIGGRAPH
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Generative Models

both for analysis and synthesis
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Generative models
NN

- For analysis:

- To form a conditional probability density function
- Example: Maximum a Posterior (MAP)

Parameters Observation Likelihood

con s [pG18)-p@®)
argmaxg p(0]|x) = -

Analysis-by-Synthesis
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Generative models
NN

- For synthesis

- To model data distribution directly
- Example: Variational Bayesian method

Latent variable

-
max. P(X) = fP(X\Z, 0) P(z)dz

Likelihood

Sample from the likelihood
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Generate new for ?
N ANA
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[Zhang et al. 2016] [Rajeswar et al. 2017]

- Curiosity about unsupervised learning?
- Better understanding / interpretation?
- Applications?

GAMES Webinar - June 29, 2017 9



Generate new for 3D Content Creation
BEVA)

- In Computer Graphics, 3D Content Creation
has been a hard-core challenge for long.
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Generate new for creativity support !
N N A

- 3D content creation calls for creativity
- Automatic, diverse & creative

Monsters University
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Generate new for creativity support !
A N\ A

- 3D content creation calls for creativity
- Automatic, diverse & creative

Thirteen Tribes
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3D Content Creation
HEA.Y

... finding powerful means to create 3D shapes is the key to
make graphics as ubiquitous as we had wanted it to be.

Jim Kajiya

Recipient of Steven Anson Coons Award
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Generating 3D shape variations
A N A

- Two basic approaches

Preserving local details
Easier
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Automatic 3D shape synthesis
A N A

- Two basic approaches

Preserving global structures
- Much harder /
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Our attempts over the past years
A N A

- Style-content separation [xuetal. SIGGRAPH Asia 2010]

Structure preservation:

Part correspondence

T~ T TR

e CONtent >
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Structure-preserving variation driven by photos
[Xu et al. SIGGRAPH 2011]
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- Structure-preserving variation driven by photos
[Xu et al. SIGGRAPH 2011]

Photograph Cosheqléers
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- Structure-preserving variation driven by photos
[Xu et al. SIGGRAPH 2011]
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- Structure-preserving variation driven by photos
[Xu et al. SIGGRAPH 2011]

Structure
optimization

A\ \
‘ '7
|

A |

> ~ | Structure preservation:
Hard-coded rules
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Our attempts over the past years
.y

- Shape set evolution (xuet al. siGGRAPH 2012]

Structure preservation:

Part correspondence
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Our attempts over the past years
A AN A

- Structure blending [Alhashim et al. SIGGRAPH 2014]

Blended shapes

Generating samples 1 %

Structure preservation:
Part correspondence + hard-code rules
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Our new goal
A N A

- Generating 3D shape variations

Structure preserving }reflectve symmetry =

\NO hard-coded rule \Correspondence-free

J J

Completely Completely
data-driven unsupervised
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Our new goal
A N\ o

- More generally, modelling the structure space
of 3D shapes ?

Geometry space of 3D shapes [Kilian et al. 2007]
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Our new goal
N AN A

- More generally, modelling the structure space
of 3D shapes ?

How about 3D shape structures?

v’ Structure preserving
v' Completely data-driven
v’ Correspondence-free
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Our approach
BE.)

- Basic idea:

- Learn a distribution that approximates the data
distribution of true 3D structures

P(X) = Pge(X)

- Marginalize over a latent variable

AN
maximize P(X) = / P(X|20)P(z)dz

S

Likelihood \

Parameters
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Variational Bayesian formulation
A N\ o

maximize P(X) — / P(X|z; 0)P(z)dz
- =

maximize E._ o [log P(X|z)]|— D [Q(z|X)||P(z)]

Z should reconstruct Assuming z’s follow a

X, given that it was normal distribution
drawn from Q(z|X)
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Variational auto-encoder

A\ A
maximize |E. o [log P(X

Reconstruction

2)] =D [Q(z]X)||P(z)]

0SS KL divergence loss

:..pKL
H e
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T b L= ||X = X'||, €veeeeennnnne: :
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Variational auto-encoder

zs~N(u, o)
— fu K
Enc(x)
Encoder >fi—  Decoder
— fo7C
iz% ] %
Enc Enc




Variational auto-encoder

zs~N(u, o)

E ()_>f“ K

nc(x

Encoder / >fi—>  Decoder
—> fo°
ZSNN(:“'O-)
Enc(x)%f”
Encoder >fi—> Decoder
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Remaining issues

2
Y s

How to deal with || How to measure th
sampling far quality of generated
away from u? structures?
. _>fﬂ ZSNN(:UJ O-)
nc(x)
Encoder >fi—> Decoder
~fe" ¢
What would be a How to encode /
good representation decode 3D shape
for input structures? structures?
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Remaining issues
HE.Y

zs~N (:u' O-)
Enc(x)

Encoder >fi—— Decoder

e °

-

What would be a How to encode /
good representation decode 3D shape
for input structures? structures?
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3D shape representation for DL
N AN A

Typically two methods
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Volumetric representation Multi-view rendered images

. AN %

Good for visual classification & recognition
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3D shape representation for DL

- Typically two methods

/ 4000
[ N |
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512 filters of
stride 1 =l |5
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stride 2

P
5 I.__,I-‘! 13

48 filters of
stride 2

3D voxel mput
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[Wu et al. 2015]
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Limitation: Oblivious to structure!
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OBB extraction

connection

Input shape Box structure

GAMES Webinar — June 29, 2017 38



Structure-aware representation
HEE.Y

- Problems with box structure representation

- Number of boxes varies from shape to shape

- ® Not neural networks friendly

30

Volume

representation Box representation
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Structure-aware representation
BE.)

- Problems with box structure representation
- Number of boxes varies from shape to shape

- ® Encode the whole structure into a fixed length code?

A fixed-length code
sampled from some
low-dimensional space
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Structure encoding / decoding
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Recursive structure encoding

(OOOO0)
Ry
fa (xl; xZ)
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Recursive auto-encoder
BEV)

- Self-reconstruction

n-D
e root code X'
P p——a il
s ol -
5 & 5
RvNN encoder RvNN decoder :

. b L= ||X = X'||yteenseeennnnes :
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Recursive auto-encoder

o“ ; v\’\
| 5-fold rot.
~ sym.

|5-fold rot.
—  sym.

Perceptually meaningful grouping leads to low
self-reconstruction error!
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Remaining issues

7
Y o

How to deal with || How to measure th
sampling far quality of generated
away from u? structures?
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Encoder >fi—> Decoder

e °

GAMES Webinar — June 29, 2017 45



Sampling far away from

RE .y
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Sampling far away from
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Adversarial training
A N\ o

- VAE-GAN (Generative Adversarial Network) architecture

zs~N(u, o)
Enc(x) G(2)
o —> g
— f; — |
Encoder
- Decoder or Discriminator
Generator
GAN
VAE ZpNP(Z)
Real box

structures
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Adversarial training
.y

- Benefit of VAE-GAN
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part code

32x32x32 output
part volume
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part code

32x32x32 output
part volume
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Synthesize geometry within a box
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Synthesize geometry within a box
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Synthesis results







Today
D AN

- What is special in generating 3D shapes?

- What is a good generative model for 3D shapes?

- What do we learn from building such a model?
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Discussion

What is a good representation for 3D shapes?

Depends on task
- Visual recognition and classification? Multi-view rendering

- Fusing 2D, 2.5D and 3D data? Volumetric representation
- Structure-aware tasks? Part representation

It may not be wise to learn everything from raw
data, despite the feature learning power of DNN

- One never learns to understand natural language from
images of characters, but instead works with symbols.

For 3D shapes, graphics people should think
Independently
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Discussion
N AN A

- What does our model learn?

- A hierarchical organization of
part structure (minimizing self-
reconstruction error)

- A good way to generate 3D
structure

- Bottom-up generation
- Creating parts and
- Hierarchically grouping parts

- This is exactly how a human
modeler creates a 3D model !
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Discussion
N AN A

- Generally, how to generate things?

- Coarse-to-fine:
- First generate coarse structure
- Then generate fine details
- May employ different representations and models

- A guiding rule for designing a generative
model
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Discussion
N AN A

- The trade-off between plausibility and diversity
- Plausible requires keeping close to input exemplars

- |Is there a definition on plausibility really?
- Similarity against exemplars?

- Diverse requires going further away
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Discussion
N AN A

- Is there a low-dim manifold of 3D shape
structures?

- Not every in-between structure is functionally valid

- However, they may reveal
- The evolution of design in human brains
- The exploration of design space in human brains

- We cannot say we model the manifold of 3D
shape structures.

- Our ongoing research ...
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Thank you!

Welcome to try - code & data
www.kevinkaixu.net



